
Artifact-centric Business Process Models in UML:
Specification and Reasoning

— PhD Thesis —

Montserrat Estañol
Advised by Prof. Ernest Teniente

March 2016

A thesis presented by Montserrat Estañol
in partial fulfillment of the requirements for the degree of

Doctor per la Universitat Politècnica de Catalunya.

Author: Montserrat Estañol
Address: Department of Service and Information Systems Engineering

Edifici Omega, Despatx S206
Jordi Girona, 1–3
08034 Barcelona, Spain

E-mail: estanyol@essi.upc.edu - montse.estanyol@gmail.com

To my grandmas

Acknowledgments

This thesis would not have been possible with the help and support of
many people.

To begin with, I would like to thank my advisor, Ernest Teniente.
I am very grateful for his guidance, rigor, support and encouragement
during all these years as his PhD student. Not only has he taught me
how to do research and given me insights on his teaching methods, but
he has also shown me his own way of understanding life. It has been a
truly enriching experience, both academically and personally, and I feel
incredibly honored and privileged for having been his PhD Student.

Secondly, I would also like to thank Anna Queralt and Maria-Ribera
Sancho, for their advice, help and support during the early stages of the
PhD. And Maria also trusted me with her students, giving me the chance
to teach in one of her courses. A special thanks also goes to Antoni Olivé,
who actually gave me the first opportunity to teach a class at university.

A big thank you as well to all the people, mainly researchers, I’ve
had the pleasure to work with during these years: Josep Carmona, Jorge
Muñoz, Diego Calvanese, Marco Montali, Sylvia Díaz-Montenegro and
Manuel Castro.

I would also like to thank my colleagues in both the research group
and the office for their support and for their help whenever I asked. My
gratitude also goes to the anonymous reviewers, whose insightful com-
ments allowed me to see some aspects of this thesis in a different light and
helped me to improve it in ways which would not have occurred to me.

I am also very grateful to my family and friends, for their support and
encouragement during all this time. In particular, I would like to thank
my parents, especially my mother, for encouraging me to study and work
hard. Together with my aunt, they have been a constant source of support
and have always been ready to lend an ear.

A special thanks go to Manel, who encouraged me from the very start
to begin the PhD journey. If it had not been for him I would not be writing
this today. He has always given me his unwavering support and has been
there when I needed him. And his knowledge of programming and good
practices has proved very useful whenever I had questions. Thanks for
everything.

Finally, I would like to dedicate this thesis to my grandmas. Neither of
them had easy access to education as children and had they own share of
difficulties, including surviving a war. Unfortunately, one of them passed
away before seeing this work completed, although I believe she would
have loved to see it. It has been through their efforts, and those of many

other people, including my parents, that I’ve had a much easier life. Thank
you.

The work presented here has been partly supported by Universitat Politèc-
nica de Catalunya - Barcelona Tech, the Spanish Ministerio de Ciencia e In-
novación under project TIN2011-24747, the Spanish Ministerio de Economía y
Competitividad under project TIN2014-52938-C2-2-R and by the Catalan agency
AGAUR under project 2014 SGR 1534.

Abstract

Business processes are directly involved in the achievement of an or-
ganization’s goals, and for this reason they should be performed in the
best possible way. Modeling business processes can help to achieve this as,
for instance, models can facilitate the communication between the people
involved in the process, they provide a basis for process improvement and
they can help perform process management.

Processes can be modeled from many different perspectives. Tra-
ditional process modeling has followed the process-centric (or activity-
centric) perspective, where the focus is on the sequencing of activities (i.e.
the control flow), largely ignoring or underspecifying the data required by
these tasks.

In contrast, the artifact-centric (or data-centric) approach to process
modeling focuses on defining the data required by the tasks and the details
of the tasks themselves in terms of the changes they make to the data. The
BALSA framework defines four dimensions which should be represented
in any artifact-centric business process model: business artifacts, lifecycle,
services (i.e. tasks) and associations. Using different types of models to
represent these dimensions will result in distinct representations, whose
differing characteristics (e.g. the degree of formality or understandability)
will make them more appropriate for one purpose or another.

Considering this, in the first part of this thesis we propose a framework,
BAUML, for modeling business processes following an artifact-centric
perspective. This framework is based on using a combination of UML and
OCL models, and its goal is to have a final representation of the process
which is both understandable and formal, to avoid ambiguities and errors.

However, once a process model has been defined, it is important to
ensure its quality. This will avoid the propagation of errors to the process’s
implementation. Although there are many different quality criteria, we
focus on the semantic correctness of the model, answering questions such
as does it represent reality correctly? or are there any errors and contradictions
in it?.

Therefore, the second part of this thesis is concerned with finding a
way to determine the semantic correctness of our BAUML models. We
are interested in considering the BAUML model as a whole, including
the meaning of the tasks. To do so, we first translate our models into a
well-known framework, a DCDS (Data-centric Dynamic System) to which
then model-checking techniques can be applied. However, DCDSs have
been defined theoretically and there is no tool that implements them.

For this reason, we also created a prototype tool, AuRUS-BAUML,
which is able to translate our BAUML models into logic and to reason on

their semantic correctness using an existing tool, SVTe. The integration
between AuRUS-BAUML and SVTe is transparent to the user. Logically,
the thesis also presents the logic translation which is performed by the
tool.

Contents

I Preface 1

1 Introduction 3
1.1 Artifact-centric Business Process Modeling 7
1.2 Quality of Business Process Models 10
1.3 Goals and Contributions of this Thesis 13

1.3.1 The BAUML Modeling Framework 15
1.3.2 Reasoning on BAUML Models 16

1.4 Research Methodology . 17
1.5 Structure of the Document . 19

II Modeling Artifact-centric Business Process Models 21

2 Preliminaries of Modeling 23
2.1 The BALSA Framework . 23
2.2 State of the Art . 25

2.2.1 Process-centric Approaches 25
2.2.2 Bridging the Gap between Process-centric and Artifact-

centric Specifications . 26
2.2.3 Artifact-centric Approaches 27
2.2.4 Summary & Conclusions 30

3 Artifact-centric Business Process Modeling in UML 33
3.1 The BAUML Framework . 34

3.1.1 Business Artifacts as a Class Diagram 35
3.1.2 Lifecycles as State Machine Diagrams 36
3.1.3 Associations as Activity Diagrams 41
3.1.4 Tasks (Services) as Operation Contracts 44

ix

x Contents

3.1.5 A Note on the Models . 46
3.2 Formalization of the BAUML Framework 46

3.2.1 Class Diagram and Integrity Constraints 47
3.2.2 State Machine Diagrams 48
3.2.3 Activity Diagrams . 49
3.2.4 Tasks . 50

3.3 An Example with Two Artifacts 50
3.3.1 Class Diagram . 51
3.3.2 State Machine Diagrams 51
3.3.3 Activity Diagrams . 55
3.3.4 Operation Contracts . 56

3.4 On the Relationship with Soft. Eng. Methodologies 59
3.4.1 Object-oriented Analysis 59
3.4.2 Enterprise Architecture 61

3.5 Summary & Conclusions . 62

III Reasoning on Artifact-centric Business Process Models 65

4 Preliminaries of Reasoning 67
4.1 Basic Concepts . 67
4.2 State of the Art . 69

4.2.1 Simulation . 69
4.2.2 Process Model Testing . 70
4.2.3 Syntactical & Structural Reasoning 70
4.2.4 Semantic Reasoning . 71
4.2.5 Summary . 75

5 Reasoning Using Data-centric Dynamic Systems 77
5.1 Background . 78

5.1.1 An overview of Data-centric Dynamic Systems 79
5.1.2 Mapping DCDSs to the BALSA Framework 80
5.1.3 Assumptions . 81

5.2 Translating a UML Artifact-centric BPM to a DCDS 84
5.2.1 Translating the Class Diagram 85
5.2.2 Translating the State Machine Diagram 89
5.2.3 Translating the Activity Diagrams 92
5.2.4 Translating the Tasks . 99
5.2.5 Summary & Overview . 107

Contents xi

5.3 Reasoning with the Resulting DCDS 109
5.3.1 Verification Logic . 109
5.3.2 Evolution of an Artifact 110

5.4 Summary & Conclusions . 112

6 Reasoning in Practice: AuRUS-BAUML 115
6.1 Checking the Semantic Correctness of BAUML Models 116

6.1.1 Verification . 116
6.1.2 Validation . 120

6.2 AuRUS-BAUML: The Tool & Its Workflow 122
6.2.1 ArgoUML . 124
6.2.2 AuRUS-BAUML . 125

6.3 Translation of BAUML into Logic 128
6.3.1 Background on Logic Formalization 128
6.3.2 Overview of the Translation Process 128
6.3.3 Translation Algorithms 129

6.4 Formalization of Tests & Results 135
6.4.1 Verification Tests . 136
6.4.2 Validation Tests . 139
6.4.3 Some Test Results . 140

6.5 Summary & Conclusions . 143

7 Decidability 147
7.1 Background . 147

7.1.1 2-Counter Machines . 148
7.1.2 Running Example: An Online-Retailer 148

7.2 Results of Our Decidability Analysis 151
7.2.1 Unrestricted Models . 152
7.2.2 Models with Non-Shared Instances 153
7.2.3 Models With Shared Instances 157
7.2.4 Applicability of the Results to the Bicing Example 158

7.3 Summary & Conclusions . 159

IV Closure 161

8 Conclusions 163
8.1 Contributions . 163

8.1.1 Modeling Artifact-centric Business Process Models . . . 164

xii Contents

8.1.2 Reasoning on Artifact-centric Business Process Models . 165
8.2 Further Research . 166
8.3 Impact of the Thesis . 167

8.3.1 Artifact-centric Business Process Modeling 167
8.3.2 Reasoning on Artifact-centric Business Process Models . 169

References 173

Appendix A Bicing: Full Example Specification 187
A.1 One Artifact . 187

A.1.1 Class Diagram . 187
A.1.2 State Machine Diagram 189
A.1.3 Activity Diagrams & Operation Contracts 189

A.2 Two Artifacts . 191
A.2.1 Class Diagram . 192
A.2.2 State Machine Diagram 193
A.2.3 Activity Diagrams & Operation Contracts 194

Appendix B Translation of Bicing into a DCDS 197
B.1 Data dimension . 197
B.2 Condition-Action Rules . 197

B.2.1 Actions . 199

Appendix C Complexity: Proofs 203
C.1 Background on 2-Counter Machines 203
C.2 Theorems’ Proofs . 204

C.2.1 Unrestricted Models . 204
C.2.2 Models with Non-Shared Instances 205
C.2.3 Models with Shared Instances 212

Part I

Preface

1

Chapter 1

Introduction

A process can be defined as “the combination of a set of activities within an en-
terprise with a structure describing their logical order and dependence whose
objective is to produce a desired result” [5]. A similar definition is given by
Weske [133], who states that a business process “consists of a set of activities
that are performed in coordination in an organizational and technical envi-
ronment [and which] jointly realize a business goal”. From both definitions,
we can gather that business processes are a set of activities carried out in a
particular manner in order to achieve a certain result or business goal.

Business process modeling, as the name implies, consists in representing
business processes by means of a model. Some of the approaches to business
process modeling represent both the process and the goals together [112, 113],
thus highlighting the importance of goals. Bearing in mind, then, the close re-
lationship between processes and goals, it is important to ensure that business
processes are performed in the best possible way.

Business process models can help to achieve this, as they have several
advantages, including the following [35]:

• They facilitate human understanding and communication. The use of
a common language between the parties involved in the process (man-
agers, analysts, modelers, etc.) facilitates this understanding.

• They provide a basis for process improvement.

• Having a process model helps support process management, as it pro-
vides a reference model to compare the actual behavior of the process to
it.

3

4 Chapter 1. Introduction

In consequence, modeling processes correctly can play an important role
in the success of a company, as it is through their processes that businesses
add value to their products or services. However, one unique process model
can hardly provide all the information that may be relevant for the business.
Therefore, Curtis, Kellner and Over define different perspectives on process
modeling [35], which share some similarities with the dimensions or spaces
defined over information systems [107] . Each perspective emphasizes a partic-
ular kind of information that is relevant in the process. They are the following:

• Functional perspective: Shows which process elements are performed
and the flow of informational entities (e.g. artifacts) that are relevant.

• Behavioral perspective: Shows when process elements are performed
(for instance, by means of sequencing) and how (e.g. decision conditions,
loops, entry and exit criteria, etc.).

• Organizational perspective: Shows where and by whom in the orga-
nization process elements are performed, the physical communication
mechanisms used for the transfer of entities, and the physical media and
locations used for storing entities.

• Informational perspective: Shows the informational entities produced
or manipulated by a process. It should also represent the structure of
informational entities and their relationships.

It is really difficult to unite all these perspectives in a single model. There-
fore different languages or models will be more or less suited to representing
a process from a particular perspective. For instance, BPMN (Business Pro-
cess Modeling and Notation) is an ISO standard language for business process
modeling, and its goal is to “provide a notation that is readily understandable
by all business users, from the business analysts [...], to the technical devel-
opers [...], and finally, to the business people [...]” [69]. Despite being the
standard language for process modeling, it has some drawbacks. For instance,
it lacks expressiveness in terms of defining the resource assignment to tasks (as
part of the organizational perspective) [24] or other authors find its procedural
nature too restrictive [40] .

Bearing this in mind, Aguilar-Savén [5], studies and analyses what she
calls “process modeling techniques” (i.e. alternative ways of representing
processes) in order to help researchers find the most appropriate technique
depending on the desirable properties of the resulting model.

5

Figure 1.1: BPMN activity-centric diagram, obtained from [97].

As some researchers point out in [20, 19, 36, 37], traditional business process
modeling has been centered on what they call a process-centric (or activity-
centric) approach: all the attention has been on the sequencing of activities
(i.e. the control flow), underspecifying or ignoring the data needed in each of
these activities.

For example, Figure 1.1 shows a typical process-centric diagram in BPMN
[98]. The diagram represents the shipment process of a hardware retailer. As
it can be seen, it focuses mainly on the tasks required to achieve the final goal:
having the goods available to be picked up.

The process begins once the goods are available to be shipped. At this
point, there are two concurrent flows of activity: on the one hand, the goods
are packaged by a warehouse worker. On the other hand, the clerk deals with
the details of the shipment: she decides whether the post is normal or requires
a special shipment. In the case of a normal post, she checks if it requires
additional insurance, and if it does, the logistics manager gets it. In any case,
she fills a label with the required details to post the package. If the package
requires a special carrier, the clerk requests a quote, assigns it to a carrier and
prepares the paperwork. Finally, when the goods have been packaged and the
paperwork is ready, the latter is added to the package and it is moved to the
pick-up area.

6 Chapter 1. Introduction

Notice that, given only the diagram in Figure 1.1, we can have an intuitive
idea of what the process is doing, but it is lacking in detail. Although we clearly
know the order of execution for the different tasks, we do not know exactly
what each of the tasks is doing. For example: how does the clerk decide if the
package requires standard post or a a special shipment?, what determines if additional
insurance is necessary? or what changes are made to the system underlying the
process?. This would require information about the data which is manipulated
by these tasks, and which is not specified in the diagram.

Relating this to the perspectives defined by [35], we can say that process
modeling has focused on describing processes from a behavioral perspective
or “control flow” perspective [25] . Even the two definitions of process that
we have given at the beginning of this chapter are based on such perspective;
especially the one from [5], as it emphasizes the fact that activities are carried
out in a certain order and may have dependencies among them.

In recent times this lack of attention to the data required by the process has
resulted in a new approach to process modeling: data-centric or artifact-centric
business process modeling, first introduced in [77, 94]. This approach focuses
on the data that is needed to carry out the different tasks in a process, and the
dependencies between these data. It relies on the assumption that businesses
need to record details of what they produce in terms of information, and
business artifacts are the means to do it.

Nevertheless, despite the emphasis on data, artifact-centric process mod-
eling goes further than just defining the data that is needed in the process.
Artifact-centric approaches also model the services or tasks that are in charge
of updating business artifacts, and they indicate when these tasks may be
executed.

For example, Figures 1.2 to 1.5 on pages 7 and 8 show various fragments
of an artifact-centric business process model extracted from [20]. Without
delving into the details, the diagrams indicate the structure of the data, how it
evolves, the conditions under which the tasks may take place and what each
of the tasks is doing. For this reason, artifact-centric process modeling falls in
between the functional, behavioral and informational perspectives described
by [35].

More importantly, however, the artifact-centric approach has been success-
fully applied to real-life cases, as shown in [17, 18]. Important companies in
the IT sector, such as IBM, have already incorporated some of the notions of
artifact-centric process modeling into their services [64].

1.1. Artifact-centric Business ProcessModeling 7

Figure 1.2: Fragment of an ER diagram representing the business artifacts,
extracted from [20].

1.1 Artifact-centric Business Process Modeling

A brief look into the research literature shows the different approaches that
have been proposed and are used to model artifact-centric business processes
since Nigam and Caswell first defined them in 2003 [94]. Alternatives range
from predominantly graphical notations such as [38, 78] to logic-based ones
[11, 27, 37].

In order to facilitate the definition and the structuring of artifact-centric
BPMs, the BALSA framework, first described in [20, 64], establishes four differ-
ent dimensions which should be present in any artifact-centric process model:
business artifacts, their lifecycles, services and associations1.

Intuitively, business artifacts represent the key data for the business and
have a lifecycle which shows how they evolve during their life. These artifacts
are manipulated by a set of services, and associations restrict the manner in
how the services make changes to the artifacts.

For instance, Figures 1.2 to 1.5 show how these four dimensions are repre-
sented in [20]. In this particular case, the authors have used an ER diagram
for the artifacts, a state machine diagram for the lifecycles, event-condition-
action rules in natural language to represent the associations and an operation
contract in natural language (with input, output, a precondition and a set of
conditional effects) to specify the services.

In contrast, [27] uses an ontology to represent business artifacts, condition-
action rules for associations, and actions - which have an input parameter and

1See Section 2.1 for more details.

8 Chapter 1. Introduction

Figure 1.3: Lifecycle of artifacts, extracted from [20].

Figure 1.4: Event-condition-action rule showing the conditions under which
a certain service (i.e. action) can execute, extracted from [20].

Figure 1.5: Service definition, extracted from [20].

1.1. Artifact-centric Business ProcessModeling 9

Figure 1.6: Ontology extracted from [27].

Figure 1.7: Condition-action rules extracted from [27].

Figure 1.8: Actions extracted from [27].

contain a set of effects to determine the changes - for services (see Figures 1.6
to 1.8). Notice that in this case there is no specific representation of the lifecycle
dimension, as the authors do not follow the BALSA framework.

What is interesting to see is the differences and the appropriateness of each
approach in different circumstances. If we look at the first model (Figures 1.2
to 1.5), it employs graphical representations for the business artifacts and the
lifecycle. For the services and the associations, it turns to natural language.
On the other hand, [27] uses a system of representation grounded on logic
(Figures 1.6 to 1.8).

In the first case, the whole artifact-centric business process model will be
easier to understand due to the use of well-known notations (ER models and
state machines) and natural language. In contrast, the second example uses a
system of representation based on logic which is more complex and unpractical
from the point of view of the business.

At the same time, the use of natural language can easily lead to errors and
misunderstandings, as it is ambiguous. However, the artifact-centric process

10 Chapter 1. Introduction

model of [27] does not share this problem, as the use of logic makes the model
formal and unambiguous.

Therefore, as we have seen by looking at these two examples, different
types of models have different characteristics which will be more appropriate
for one circumstance or another. By using different models for each of the
dimensions in the BALSA framework, we will obtain different business process
models with different characteristics bringing them closer to one perspective
or another.

One of the challenges is to find the most appropriate model to represent
these dimensions [64] depending on the model’s purpose. Ideally, the final
model or set of models should be able to represent artifact-centric business
process models in a formal way, in order to avoid ambiguities and errors, but
in a way that is easy to understand for all the parties involved in the business
process, such as managers, analysts and modelers. This is one of the challenges
in artifact-centric business process modeling.

Challenge

Find a way to represent artifact-centric business process mod-
els that is easy to understand for the people involved in the
business process and at the same time is formal, to avoid am-
biguities and errors.

1.2 Quality of Business Process Models

However, having a model that is intuitive and easy to understand for business
people and designers is not enough. Ensuring the quality of the model is
important, for many different reasons, such as avoiding errors in the final
implementation of the process or having a process that is more efficient and
compliant with the business requirements, just to mention a few. This will, in
turn, save the company money and make it easier to achieve their goals.

Although we can distinguish between the quality of business processes
and the quality of the modeling process [95] , we will focus on the quality of a
model. Hommes [63] summarizes the most relevant criteria used to evaluate
it:

• Completeness: The model should contain all statements of the domain
that are relevant.

1.2. Quality of Business ProcessModels 11

• Correctness: There are two types of correctness:

– Syntactic correctness: The model complies with the syntax of the
modeling language that is used.

– Semantic correctness: The model represents the domain correctly.

• Consistency: The statements in the model are not contradictory.

• Minimality: The model should be as simple and as small as possible
while at the same time representing the domain correctly.

• Comprehensibility: The model should be easy to understand by its
users and developers.

• Predictive value: It should be easy to infer statements from the model
that comply with the represented domain.

Checking whether a model fulfills all these criteria can be daunting. Some
of the criteria, such as comprehensibility, are subjective to a certain degree
and therefore difficult to check in an objective way. Other criteria, such as
correctness and consistency, are more objective and easier to verify.

According to the literature review in [95], not many of the works that deal
with business process quality focus on their correctness or semantic quality.
From those that do, process-centric approaches have centered on verifying the
syntactical and structural correctness (e.g. detecting deadlocks, lack of sync)
of the models. Examples of these works are [3, 43, 116, 91]. These approaches,
being process-centric, lack knowledge from the domain they represent, as they
do not model the data. For this reason it is not possible to perform any kind
of semantic tests automatically.

This can be easily seen by returning to the process-centric model in Figure
1.1. An example of syntactic check that we can perform is ensuring that the
nodes have the appropriate number of incoming and outgoing edges. For
instance, an end event (Figure 1.9) cannot have any outgoing edges or flows,
or a gateway (Figure 1.9) must either have multiple incoming or multiple
outgoing flows. Notice that in Figure 1.1 they do have the appropriate number
of flows.

Let’s see another example, this time of a structural property. In this case
we could check if parallel paths are closed by a parallel gateway and not an
inclusive or exclusive gateway to avoid lack of sync errors. If we look at the
diagram, we can see that the flow is split in parallel paths right after it begins

12 Chapter 1. Introduction

End event Parallel gateway Exclusive Gateway Inclusive Gateway

Figure 1.9: Different BPMN nodes.

execution, and the paths are joined together again right before the end using
a parallel gateway. Therefore, the diagram has no synchronization errors.

Another property that could be interesting to check is the executability of
the tasks or activities. Notice that this would fall in the category of semantic
correctness. For instance, at a certain point in the flow the clerk has to decide
the mode of delivery, and it is either normal post or a carrier. Can we guarantee
in some way that the tasks in both paths can be executed? Or maybe, for some
unknown reason, only one of the paths is taken? Unfortunately, since we
have no knowledge about the data, we cannot answer these questions without
implementing the process, and even then, it may be difficult to find an answer.

In contrast, these types of question could be answered in an artifact-centric
process model, due to the definition of the data and the specification of the
tasks or services. Research in artifact-centric business process modeling has
precisely focused on checking the semantic correctness of the model (see for
instance [9, 10, 37, 27]) in order to answer them.

Returning to the two different artifact-centric models we saw before
(pages 7 to 9), both have the potential to be checked to ensure their se-
mantic correctness. For instance, in the first artifact-centric example (Fig-
ures 1.2 to 1.5 on pages 7 and 8) we could check if tasks create_schedule and
adjust_task_dates can be executed. To do so, we would need to consider all
the different models (in this case, the ER and the state machine diagrams, and
the ECA rules and the specification of the tasks in natural language).

Although the first model/example has the potential to be checked seman-
tically because of the data and the defintion of the tasks, it has an issue that
prevents it: the tasks and ECA rules are defined in natural language, natural
language can be ambiguous and therefore it would require first a transforma-
tion into a more formal language. As it is, we cannot answer those questions.

On the other hand, the second model (Figures 1.6 to 1.8 on page 9) uses
a formal notation grounded on logic for all the elements in the model. In
this case, questions like Can task graduate execute? or Do all enrolled students
graduate? can be answered applying techniques of model checking to the

1.3. Goals and Contributions of this Thesis 13

model. One of the goals of the paper [27] is, in fact, to show how to ascertain
specific properties over the model.

Most of the approaches that deal with semantic reasoning on artifact-centric
business process models such as [9, 10, 37, 27] also use languages based on
logic. These models are clearly difficult to understand by all people involved
in the business process, but more particularly so by managers and business
analysts. Therefore, another challenge is to be able to check automatically
their semantic correctness, but the models should be defined at a high level of
abstraction and use a language that can be understood by them.

Challenge

Find a way to check the semantic correctness of an artifact-
centric process model defined in a high-level language which
can be understood by the people involved in the business pro-
cess.

1.3 Goals and Contributions of this Thesis

The goal of this thesis is to address the two challenges presented in the pre-
vious sections. More specifically, we wish to find a way to represent business
processes following an artifact-centric perspective that has the following char-
acteristics:

• It provides us with a high-level representation of the business process.

• It can be easily understood by the people involved in the different stages
of the business process development, from definition to implementation.

• It has precise semantics so that it can be used to check the models’
correctness automatically.

• It is possible to check the correctness of the model automatically.

These goals are summarized in the table below:

14 Chapter 1. Introduction

Goals of the Thesis

Model artifact-centric business process models following the
BALSA framework, using a high-level language that is easy to
understand by the people involved in the business process and
at the same time formal enough to avoid ambiguities.

Define a method to check the correctness of the artifact-centric
business process model defined above.

Considering this, the contributions of this thesis are the following:

1. A framework, BAUML, for modeling artifact-centric business process
models using UML and OCL. This provides us with process models
which have a high-level of abstraction and use a language which is
known in the academia and the industry.

2. An approach to check the semantic correctness of the artifact-centric
business process models as defined in the BAUML framework. To do
so, the models need to be translated into intermediate languages which
can then be used to obtain the results. We use two different approaches
to do so:

a) The first approach is based on DCDSs (Data-centric Dynamic Sys-
tems) [11], which is a theoretical framework for artifact-centric busi-
ness process modeling grounded on logic. Once the models are
translated into a DCDS, model checking techniques can be applied
to it to determine their correctness.

b) The second approach relies on an existing tool, SVTe [53], to perform
the correctness checks. In this case, the intermediate language is
based on first-order logic.

3. A prototype tool, AuRUS-BAUML, to automatically translate the
BAUML models into first-order logic as required by SVTe. By connecting
the two tools, the translation and reasoning process becomes transparent
to user/modeler.

4. A study on the conditions which guarantee decidability of reasoning
over our models.

1.3. Goals and Contributions of this Thesis 15

Table 1.1 summarizes the contributions, the chapters where they are and
the related publications.

Table 1.1: Summary of the contributions, their location in this thesis and the
related publications

Topic Contribution Location Publication

Modeling Framework Section 3.1 [45, 46, 47, 48, 49]
Formalization Section 3.2 [28, 29, 51]

Reasoning
Using DCDS Chapter 5 [50]

Using AuRUS-BAUML Chapter 6 [51]
Decidability Chapter 7 [28, 29]

1.3.1 The BAUML Modeling Framework

The first contribution of this thesis is the BAUML framework, which we use
to specify business processes from an artifact-centric perspective. To do so,
we use the dimensions in the BALSA framework [64] as a basis. For each
dimension, we propose a combination of UML and OCL models and explain
how they are related.

Despite the fact that BPMN is the de facto standard for business process
modeling, it is very limited when it comes to representing the data, a key
element in artifact-centric business process modeling.

On the other hand, using UML and OCL to represent all the dimensions in
the BALSA framework provides several advantages:

• We represent all the dimensions of the BALSA framework using the same
languages.

• Both languages integrate in a natural way.

• UML is an ISO standard [67] and is a language known both in the
academia and in the industry.

• Using these languages provides us with a high-level representation of
the process, which is what we strive for.

The details of this framework and its formalization can be found on Chap-
ter 3.

16 Chapter 1. Introduction

Related Publications A first approach to the framework was presented in
[46]. Simultaneously, we also created a technical report [45] with its application
to the EU-Rent case study, a fictional car-rental company. The framework was
further refined and described in [47], where it was selected for a revised
version to be published as a book chapter. In the revised version [48], we
included the application of the framework to a more complex example with
two artifacts and we created another technical report with the full specification
of the example [49].

The framework was then formalized in [28] and [51].

1.3.2 Reasoning on BAUML Models

The second main contribution of the thesis deals with the correctness of
BAUML models. Having a model that can be understood by the various
parties involved in the business process is just a first step towards achieving
our goal. The next step, and what adds more value, is being able to check the
correctness of these models automatically.

As we have seen, we distinguish between syntactic and semantic correct-
ness. We focus on semantic correctness, because the powerfulness of artifact-
centric process models lies on the domain knowledge embedded in them due
to the use of data.

We consider two types of semantic correctness: verification ensures that
there are no inherent errors or contradictions in the model, whereas valida-
tion checks that the models represent the domain accurately. Verification can
potentially be performed without user intervention, whereas validation re-
quires, in most cases, user intervention to define the desirable properties that
the model should fulfill to be a valid representation of the domain.

As there was no tool that could perform the verification and validation
tests on the BAUML models, we opted to translate them into an intermediate
language which can then be used for this purpose. We adopt two different
approaches.

In the first approach, we translate the models into a Data-centric Dynamic
System. DCDSs are grounded on logic and use properties defined inµ-calculus
to state the characteristics that the system should fulfill. By applying model
checking techniques, we can then determine if the model fulfills them.

Despite the potential of DCDS, there is no tool that can actually perform
the kind of tests described above. However, there is a tool in our department,
SVTe [53], that given a database schema, a goal, and a set of restrictions is able
to generate a set of base facts necessary to achieve the goal without violating

1.4. ResearchMethodology 17

any restrictions. If no such solution exists, then the tool returns a list of the
restrictions that do not allow reaching the goal.

Therefore, we take advantage of the tool by translating the BAUML mod-
els into the logic required by it. Finally, in order to prove the feasibility of
our approach, we have implemented a prototype tool, AuRUS-BAUML, that
translates automatically the BAUML models into a first-order logic suitable
for SVTe. SVTe performs the reasoning, and the result obtained by it is then
provided to the user. The interaction between the two tools is transparent to
the user.

As a last contribution in this area, we also study the complexity of reason-
ing on our BAUML models and determine the restrictions which guarantee
decidability over them.

Related Publications The work described above has resulted in several pub-
lications. The use of DCDS to perform reasoning on our models was first
described in [50]. This work has been extended in the present thesis and can
be found on Chapter 5. Similarly, the approach using SVTe has been explained
in [51]. The complexity results have been published in [28, 29].

1.4 Research Methodology

The research methodology that we follow in this thesis is called design-science
research. Design science, as Hevner and others explain, “creates and evaluates
IT artifacts intended to solve identified organizational problems”[61]. These
artifacts may be represented as software, logic, mathematics or even informal
descriptions in natural language.

As [61] points out, design science is both a process and a product. There
are two different processes or activities: build and evaluate. Building consists
in creating the product; evaluating means checking that the performance of
the product is appropriate for the purpose it was first built [90].

According to [90] there are four product types: constructs, models, methods
and instantiations. Constructs are the common language for communication;
models represent the design problem and its solution; methods indicate the
way to perform certain activities; instantiations show that constructs, models
and methods can be implemented [61, 90].

There are several guidelines that can be followed to perform design-science
research [61]. They are the following:

1. Design as an artifact: The creation of an innovative artifact or product.

18 Chapter 1. Introduction

2. Problem relevance: The artifact should provide some utility for a speci-
fied problem.

3. Design evaluation: The artifact should be evaluated exhaustively.

4. Research contributions: The artifact should be innovative.

5. Research rigor: The artifact must be defined, represented formally, and
it should be coherent and consistent.

6. Design as a search process: The search for an artifact should comply
with laws in the problem’s environment using available means.

7. Communication of research: The results of the research should be com-
municated in a way that is understandable by both technical and business
people.

In this thesis we followed the guidelines above. To begin with, the result
of our work is a framework to model artifact-centric business process models
using UML and OCL, and two different approaches to automatically check
the models’ correctness (Guideline 1). This is useful (Guideline 2) in two
different ways. First of all, we present a model that is meant to be easy to
understand and contributes to existing research by introducing an alternative
way of representing artifact-centric process models. Secondly, we show how
to check the model in order to ensure its quality. In this way, we avoid errors
reaching the implementation stage.

We have validated this proposal and its translation into logic by applying
it to different examples and one case study. We also created a protoype tool to
show the feasibility of our approach (Guideline 3). Our proposal is innovative
because none of the existing proposals uses a combination of UML and OCL
to represent all the dimensions of an artifact-centric process model and, to
the best of our knowledge, there was no tool to automatically perform the
validation with these models (Guideline 4).

Moreover, the research process and results are rigorous, as we have based
it on existing research and proven methods of reasoning, on top of which we
have added our contributions (Guidelines 5 and 6). Finally, our research results
have been published in relevant conferences and journals, and therefore have
been communicated effectively to the relevant communities (Guideline 7). For
a list of these publications and their abstracts, check Section 8.3 on page 167.

Last but not least, we would like to point out that Léelo [82], a Spanish com-
pany, expressed an interest in our work. For this reason, our university signed

1.5. Structure of the Document 19

a collaboration agreement with them, under project name Kopernik: cambiando
el origen de las cosas (datos vs tareas) (Kopernik: changing the origin of things (data vs
tasks)), in order to work together to adapt the modeling methodology to their
specific needs. This confirms the relevance of the problem in the industry and
shows that the impact of our work goes further than the academia.

1.5 Structure of the Document

This thesis is structured into four different parts:

Part I The first part has one chapter (Ch. 1: Introduction) and comprehends
the introduction to the topic of the thesis, its contributions in the context of
design-science research and its structure.

Part II The second part of the thesis focuses on BAUML, our methodology
for artifact-centric business process modeling. It includes two chapters:

Chapter 2: Preliminaries of Modeling This chapter introduces the
BALSA framework, which we base our work on, and a review of the state
of the art in terms of modeling business processes.

Chapter 3: Artifact-centric Business Process Modeling in UML This
chapter presents our approach for artifact-centric business process modeling
using a combination of UML and OCL models. It illustrates the approach
by using an example based on a city-bicycle rental system such as Bicing in
Barcelona. It also formalizes the approach and afterwards extends the example
to include two artifacts. The chapter ends by giving a brief overview of the
relationship between our approach and software engineering methodologies.

Part III The third part of the thesis focuses on reasoning on these models. It
is structured in four different chapters:

Chapter 4: Preliminaries of Reasoning This chapter introduces the topic
of reasoning on artifact-centric business process modeling. It also analyzes the
related work by specifically focusing on semantic reasoning (i.e. considering
the data and the tasks), although it also gives an overview of related topics
such as simulation, syntactic/structural reasoning and process model testing.

20 Chapter 1. Introduction

Chapter 5: Reasoning Using Data-centric Dynamic Systems This chap-
ter introduces DCDSs (Data-centric Dynamic Systems), a theoretical frame-
work for artifact-centric business process models which, as it is grounded
on logic, makes it suitable for reasoning and checking the correctness of the
artifact-centric BPM. Therefore, the chapter details the translation process re-
quired for going from BAUML to DCDSs and how we can perform the cor-
rectness checks.

Chapter 6: Reasoning in Practice: AuRUS-BAUML Unfortunately, the
DCDS framework in the previous chapter has been defined theoretically and
no tool can actually perform the required checks to ensure the model’s cor-
rectness. Bearing this in mind, this chapter presents some validation and
verification tests, together with a prototype tool, AuRUS-BAUML. AuRUS-
BAUML is able to translate the BAUML models into first-order logic as re-
quired by another tool, SVTe, which is able to answer the kind of questions we
are interested in once they are formulated into logic. SVTe is integrated into
AuRUS-BAUML seamlessly.

Chapter 7: Decidability Finally, the last chapter in this part studies the
decidability of performing reasoning on our BAUML models. It proves that,
without any restrictions, it is undecidable to check if the model fulfills a given
property. By incrementally establishing restrictions over the models, we find
out a class of models for which decidability is guaranteed.

Part IV The final part of the thesis contains only one chapter, (Ch. 8: Con-
clusions). This chapter summarizes the contributions of the thesis and points
out further research. It also includes a section on the various publications
in relevant conferences or as book chapters that have resulted from the work
presented here.

Part II

Modeling Artifact-centric Business
Process Models

21

Chapter 2

Preliminaries of Modeling

As we have explained, one of the goals of our thesis is to find a way to define
business process models from an artifact-centric perspective in a modeler-
friendly way, but using a language which at the same time has precise seman-
tics. Before doing so, this chapter presents the necessary background. First of
all, it introduces the BALSA framework, which we use as a basis for our work.
After this, we examine the related work in two related areas: process-centric
and artifact-centric business process modeling.

2.1 The BALSA Framework

To facilitate the analysis of artifact-centric process models, [64, 20] proposed
the use of the BALSA (Business Artifacts, Lifecycles, Services and Asso-
ciations) framework. This framework establishes the common ground for
artifact-centric business process modeling by defining four different dimen-
sions which, ideally, should be present in any artifact-centric process model.
We summarize here the most relevant characteristics of each dimension:

• Business artifacts represent the data required by the business and whose
evolution we wish to track. Each artifact has an identifier and may be
related to other artifacts, as represented by the associations among them.

• The lifecycle of a business artifact states the relevant stages in the evo-
lution of the artifact, from the moment it is created until it is destroyed.
Each business artifact will have the corresponding lifecycle.

23

24 Chapter 2. Preliminaries ofModeling

Business
Artifacts

Lifecycles

Services

Associations

Figure 2.1: Dimensions in the BALSA framework. Adapted from [64].

• Services, or tasks, represent atomic units of work and they are in charge
of creating, updating and deleting the business artifacts.

• Associations represent constraints in the manner how services make
changes to artifacts. That is, in general, services cannot freely manipulate
the artifacts, and the associations correspond to the restrictions imposed
over services in the manner how they make those changes. This implies
that associations can restrict the order in which services are executed.
They may be specified using a procedural specification (e.g. a workflow)
or in a declarative way (e.g. condition-action rules).

Apart from business artifacts, businesses may also need to store data whose
evolution does not result in relevant states from the point of view of the busi-
ness. We will refer to this data as objects. Figure 2.1 shows the different BALSA
dimensions and how they relate to each other. As it can be seen, artifacts have
a lifecycle, which is made up of several states, and the associations show how
services can only be executed when the artifact is in a certain state.

If we think of a traditional, process-centric diagram, such as a flowchart,
usually there is only one of the BALSA dimensions represented there: the flow
between the tasks in the process, called associations in the framework. In most
cases, as the data has not been defined, neither are the tasks, and therefore the
diagram does not provide information on the meaning or the semantics of the
tasks. Consequently, we cannot consider that the service dimension is really
represented.

We use the BALSA framework as a basis in the remainder of this work for
two main reasons: first of all, it defines what elements make up an artifact-

2.2. State of the Art 25

centric business process model. Therefore, by representing all these dimen-
sions, we will ensure that we have an artifact-centric model. Secondly, it can be
used to establish a basis to compare the different approaches for artifact-centric
business process modeling, which is what we do in the following section.

2.2 State of the Art

After presenting the BALSA framework, this section analyzes different alterna-
tives to represent business process models. Although we are mainly interested
in the artifact-centric approach, we also examine process-centric approaches,
as they could be used to specify, if not all, at least one of the dimensions
of artifact-centric process models. We also devote a small subsection to ap-
proaches which try to reconcile process-centric and artifact-centric approaches
by establishing mappings and defining algorithms to change from one to the
other.

2.2.1 Process-centric Approaches

There are several languages available to represent business process models
following a traditional, or process-centric, approach. One of the most well-
known is probably BPMN (Business Process Modeling Notation); however,
there are others such as UML activity diagrams, Workflow nets or YAWL (Yet
Another Workflow Language) [133].

Although some of these languages have the ability to represent the data
needed in the flow, their focus is on the sequencing of the tasks that are carried
out in the process. DFDs (data-flow diagrams) would be one example of this.
While placing high importance on the data, the focus is on how these data
move in the process, from one task to next, and little importance is given to
their details or on the precise meaning of the tasks [134].

Another well-known language is BPEL (Business Process Execution Lan-
guage). However, it is meant to be a web-service composition language fol-
lowing XML notation, and our focus is on defining processes at a high level of
abstraction [133].

Apart from the languages themselves, there has been some process-centric
research that takes data into consideration. For instance, [127] represents the
associations between services in a WFD-net (WorkFlow nets annotated with
Data). The tasks are annotated with the data that is created, read or written by
the task.

26 Chapter 2. Preliminaries ofModeling

Similarly, [89] uses WSM nets which represent both the control flow and the
data flow, although the data flow is limited to read and write dependencies
between activities and data. [85] represents associations in an operational
model, which shows tasks (or services) as nodes connected using arrows or
edges. The operational model also shows the transfer of artifacts between
tasks by indicating them over the edges. However, details of artifacts are not
shown.

A more complex representation can be found on [118]: they combine the
use of ontologies with colored Petri nets (CPN). Then these Petri nets include
annotations which refer to the ontology data in order to be able to “adapt” the
Petri nets to the context.

To sum up, the majority of process-centric approaches focus on the se-
quencing of the tasks in the diagram; therefore, their effort is on representing
the associations between the services, according to the BALSA dimensions.
There are some works that consider the data, however, this representation is
limited to read and write dependencies and/or the data flow. In consequence,
it lacks the richness of an artifact-centric representation.

2.2.2 Bridging the Gap between Process-centric and Artifact-centric
Specifications

There are some works, such as [76, 79, 108], which attempt to bridge the gap
between artifact-centric and process-centric specifications. Their final goal is
to derive an artifact-centric specification from a process-centric one [79, 108]
or vice versa [76]. We will focus on their representation of artifact-centric
processes.

All these works represent lifecycles using variants of state machines, and
associations are represented in different types of workflow diagrams. In par-
ticular, [79] uses UML state machine and UML activity diagrams, respectively.
[108] uses the FlowConnect language, which merges concepts from UML state
machine and sequence diagrams, to represent the lifecycle. [76] represents the
lifecycle and associations in a diagram which resembles a combination of a
state machine and activity diagram, as it shows both the potential states of the
artifact and the tasks that may be applied to it.

In contrast, representation of artifacts (or the data) varies from one ap-
proach to the other. For instance, [76] represents artifacts in very simple
diagrams showing only the dependencies between them. [108] uses a UML-
like class diagram showing the relationships between the artifacts/objects. On

2.2. State of the Art 27

the other hand, [79] has no specific representation for them, other than the
relationships between artifacts which may be derived from the lifecycle.

The main drawback of these approaches is that they do not specify the
services/tasks in any way. Although in their context it is reasonable not to
do so, as process-centric specifications do not model in detail with the data
nor the meaning of the tasks, the specification of the tasks or services is a key
element in artifact-centric specifications and in our approach, as we shall see.

2.2.3 Artifact-centric Approaches

After giving an overview of process-centric approaches and proposals that
bridge the gap, we will deal in more detail with works that specify business
processes from an artifact-centric perspective. To facilitate the analysis, this
subsection is structured according to the dimensions of the BALSA framework
for easier readability and comparison. Despite the fact that not all proposals
use the BALSA framework as a basis, in most cases it is easy to establish a cor-
respondence between the different components of the models and a dimension
in the framework.

A table summarizing our analysis can be found on page 31.

Business Artifacts Business artifacts can be represented in several ways.
Many authors opt for a database schema [9, 11, 15, 31, 92, 37], while others
consider artifacts as a set of attributes or variables [19, 54, 94]. Another alter-
native is to add an ontology represented by means of description logics on top
of a relational database [27]. Although some of these alternatives describe the
artifacts in a formal way, none of them represent the artifacts in a graphical
way. This has some disadvantages: the models are more difficult to under-
stand, e.g. it is more difficult to see how the artifacts relate to one another and
to other objects.

There are also many works that represent artifacts in a graphical and formal
or semi-formal way. For instance, [65, 39, 66] represent the business artifact
and its lifecycle in one model, GSM, that includes the artifact’s attributes.
However, the relationships between artifacts are not made explicit. On the
other hand, [87] represents artifacts as state machine diagrams defined by
Petri nets, but does not give details on how the attributes of an artifact are
represented. Closer to a UML class diagram is the Entity-Relationship model
used in [20]. [52] uses a UML class diagram. Both the ER diagram and the
UML class diagram are graphical and formal (or semi-formal) alternatives.

28 Chapter 2. Preliminaries ofModeling

Finally, [78, 74] define the PHILharmonicFlows framework, which uses a
diagram that falls in-between a UML diagram and a database schema repre-
sentation. It is a semi-formal representation.

Lifecycles The lifecycle of a business artifact may be implicitly represented
by using dynamic constraints in logic [9] or the tasks (or actions in the termi-
nology of the papers) that make changes to the artifacts [15, 31, 11, 27].

In this context, however, we are interested in approaches that represent
the lifecycles explicitly. In many cases, such as [20], they are based on state
machine diagrams, as they show very clearly the states in the evolution of
the artifact and how each state is reached and under which conditions. [92]
derives the artifact’s lifecycle in a state machine diagram from a BPMN model
annotated with data.

The GSM approach represents the stages in the evolution of an artifact,
the guard conditions, and the milestones in a graphical way. A milestone is
a condition that, once it is fulfilled, it closes a state. In contrast to traditional
state machine diagrams, the sequencing of stages is determined by the guard
conditions and not by edges connecting the states, making it less straightfor-
ward. However, it is possible to use edges as a macro. Another difference is
that in GSM various stages can be open, or active, simultaneously. GSM was
first defined in [65] and further studied and formalized in [39, 66].

Another alternative to represent lifecycles is to use variants of Petri nets
[52, 87, 75]. These representations are both graphical and formal. [78, 74],
within the PHILharmonicsFlows framework, use a micro process to repre-
sent the evolution of an artifact and its states, which results in a graphical
representation similar to GSM, without its strong formality.

Finally, some works opt for using a variable to store the artifact’s state
[37, 19]. Although it is an explicit representation, it only stores the current
state of the artifact, instead of showing how it will evolve from one stage to
the next. Therefore, it is a poorer form of representation in contrast to state
machine diagrams, variants of Petri nets or GSM.

Services Services are also referred to as tasks or actions in the literature.
In general, they are described by using pre and postconditions (also called
effects). Different variants of logic are used in [9, 11, 37, 19, 54, 15, 27] for
this purpose. [31, 39] omit the preconditions. The use of logic implies that
the definition of services is precise, formal and unambiguous, but it is hardly
understandable by the people involved in the business process.

2.2. State of the Art 29

Conversely, [20] uses natural language to specify pre and postconditions.
In contrast to logic, natural language is easy to understand, but it is an in-
formal description of services: this implies that the service definition may be
ambiguous and error-prone.

Finally, [92] expresses the preconditions and postconditions of services
by means of data objects associated to the services. These data objects are
annotated with additional information such as what is read or written. [78, 74]
define “micro steps” in the stages of their model which correspond to attributes
that are modified. None of these approaches are as powerful as using logic
nor the OCL language.

Associations In general, the different ways of representing associations can
be classified on whether they represent them graphically or not. Many non-
graphical alternatives are based on variants of condition-action rules. These
alternatives have one main disadvantage over graphical ones: in order to
know the order in which the tasks can execute, it will be necessary to carefully
examine the rules. In contrast, graphical alternatives are easier to understand
at a glance, although they are less flexible.

For instance, [9, 11, 31, 27] use a set of condition-action rules defined in logic.
[19] calls them business rules. Similarly, [39, 65, 66] define guards in the GSM
model following an event-condition-action style. In [37, 54, 15], preconditions
determine the execution of the actions; as such, they act as associations. As
they are defined in logic, they are formal and unambiguous.

Likewise, [20] uses event-condition-action rules, but they are defined in
natural language. Using natural language makes them easier to understand
than those defined in logic, but they have a severe drawback: they are not
formal and because of this they may have ambiguities and errors.

Alternatively, [52] uses channels to define the connections between proclets.
A proclet is a labeled Petri net with ports that describes the internal lifecycle
of an artifact. On the other hand, DecSerFlow allows specifying restrictions
on the sequencing of tasks, and it is used in [75]. It is a language grounded on
temporal logic but also includes a graphical representation.

When it comes to graphical representations, [78, 74] use micro and macro
processes to represent the associations between the services. [92] uses a BPMN
diagram to represent the associations between the tasks. In this sense, it is very
similar to our proposal to use UML activity diagrams. All these approaches
are graphical and formal.

30 Chapter 2. Preliminaries ofModeling

In contrast, [94, 17] opt for a graphical representation using flowcharts and,
because of this, the resulting models can be easily understood. However, they
do not use any particular language to define the flow and they do not define
the semantics of the flowchart.

2.2.4 Summary & Conclusions

We have already explained the limitations of process-centric approaches,
which focus almost exclusively on the association dimension of the BALSA
framework. In some instances they consider the data, but they never go into
the details of how the data is modified.

In addition, the approaches that bridge the gap between artifact-centric
and process-centric specifications lack, in some cases, a detailed definition
of the data, and, in all of the analyzed works, there is no specification of
the services or tasks. The service dimension is a key element in artifact-
centric specifications and, considering the goals of this thesis (e.g. being able
to reason with the artifact-centric business process models), it should be an
indispensable component in our approach.

Table 2.1 shows a summary of the artifact-centric approaches. From the
table, we can gather that many of the approaches do not represent all the
dimensions in the framework. Those that do, will each have its own advan-
tages and disadvantages. In particular, we will focus on the Philharmonic
Flows [78, 74], the GSM modeling notation [65, 39, 66] and the proposals in
[19, 20, 37, 92].

The approach in [20] uses several different models based on different lan-
guages to represent the dimensions in the BALSA framework. Its main draw-
back is that it uses condition-action rules and actions defined in natural lan-
guage, to represent the associations and the services, respectively. Therefore,
the final model lacks formality and may be ambiguous.

As we have seen, [92] represents artifact-centric business process models
using a BPMN model for the associations and the services, and a database
schema for the artifacts. Lifecycles are inferred from the annotations in the
BPMN model. Notice that the dimensions are not defined using the same
language, and the specification of the services is limited to a graphical nota-
tion showing creation, updates and deletions over artifacts and relationships.
This is not as powerful as using logic or a formal language to describe the
tasks or services, although it is more intuitive due to the use of a graphical
representation.

2.2. State of the Art 31

Approach Graphical? Formal?

A
rt

if
ac

ts

DB Schemas
[9, 31, 15, 11]

[92, 37, 19] X
Attributes [54, 94] (X)
Ontology [27] X
ER Model [20] X X

UML Class Diag. [52] X X
Data diagr. (P.F.) [78, 74] X X
GSM’s attributes [39, 65, 66] X

Petri-Nets [87] X X

Li
fe

cy
cl

e State Machine [20, 92] X X
Variants of Petri-Nets [75, 52, 87] X X

GSM [39, 65, 66] X X
Micro proc. (P.F.) [78, 74] X X

Variable [37, 19]

Se
rv

. Pre / Post. in Logic
[9, 37, 19, 54, 15]

[27, 11, 31, 39] X
Natural Language [20]

Micro steps (P.F.) [78, 74] X X
Data Objects [92] X (X)

A
ss

oc
ia

ti
on

s

Business/CA Rul. - Logic [19, 9, 11, 31, 27] X
Preconditions [37, 54, 15] X

Guards (GSM) [39, 65, 66] X
ECA Rul. - Nat. L. [20]

DecSerFlow [75] X X
Channels (Proclets) [52] X X

Mic./mac. proc. (P.F.) [78, 74] X X
BPMN [92] X X

Flowcharts [94, 17] X

Table 2.1: Overview of alternative representations of artifact-centric process
models. P.F stands for PHILharmonicFlows.

32 Chapter 2. Preliminaries ofModeling

On the other hand, [37] defines artifacts in a database, and their lifecycles
are stored in a status variable. The services have preconditions and postcon-
ditions defined in logic, and the services’ preconditions actually act as the
associations, determining when a service may take place.

Similarly, [19] represents artifacts using a tuple of attributes which includes
identifiers and a status variable to represent the artifact’s lifecycle. Services
have a precondition and a set of effects represented in logic, but in this case
business rules determine when a certain service may execute.

Both approaches in [37, 19] the advantage of being formal, but at the same
time they are not practical from the point of view of the business, due their
lack of a graphical, more understandable notation.

The Philharmonic Flows framework [78, 74] has been created with the pur-
pose of defining artifact-centric business process models. The authors create
their own models for each of the dimensions, and include other perspectives
such as access control and automatic generation of forms. However, it is not
based in a well-known language.

Similarly to Philharmonic flows, the GSM notation [65, 39, 66] does not rely
on existing specific models. It is grounded on a graphical representation of the
stages in an artifact’s life, which includes the conditions which determine the
opening and closing of a stage. However, its great potential for representing
complex scenarios is also one of drawbacks: the presence of multiple guards
and milestones which may open and close one or several stages in the diagram
can lead to several difficulties to read and even create the diagrams. Moreover,
the definition of the artifacts is based on a set of attributes, and therefore it is
difficult to see the relationship between the various artifacts involved in the
process.

In summary, all the examined approaches have their advantages and dis-
advantages. In particular, we find that none of the examined works have all
of the following characteristics:

• It uses a well-known, formal language, to represent all the dimensions
in the BALSA framework.

• This language can be understood by business modelers and developers.

• It bridges the gap between artifact and process-centric approaches.

• There are available tools to model the business process following the
approach.

Chapter 3

Artifact-centric Business Process
Modeling in UML

According to [64], one of challenges in the artifact-centric business process
modeling world is finding the most appropriate way to model business pro-
cesses from an artifact-centric perspective. In the previous chapter we have
seen different alternatives for artifact-centric business process modeling. Al-
though they all have their purpose, they do not completely cover our needs.

For this reason, in this chapter we detail our proposal for modeling artifact-
centric business process models using a combination of UML and OCL [48, 47],
with the BALSA framework as a basis.

Both UML and OCL are ISO standard languages [67, 68] and integrate with
each other naturally. UML is traditionally used to represent the specification
of systems and it provides models to represent both the static and the dynamic
characteristics of the system.

In particular, we propose to use the UML class diagram, the UML state
machine diagram, and the UML activity diagram to represent, respectively, the
business artifacts, their lifecycles, and the associations between the services or
tasks. To show the details of the services, we use OCL operation contracts.

To do so, we follow, in a sense, a top-down approach. That is, we define
the process models from scratch in order to implement them later. However,
an alternative way would be to follow a bottom-up approach: for already
running processes, we could derive the artifact-centric process models from
the log traces as done in [102, 101].

Moreover, we would like to emphasize the fact that our approach focuses on

33

34 Chapter 3. Artifact-centric Business ProcessModeling in UML

specifying the process from a high-level/analysis perspective: we are interested
in what the process does, not on how it does it [81]. This means that, unlike other
approaches such as [78], we completely abstract away from the presentation
of the data to the user or the process’s implementation.

This chapter is structured in the following way. The first section introduces
the different UML/OCL models and their use within the BALSA framework
and the second section formalizes the models. The third section further illus-
trates the proposal by showing its application to an example with more than
one artifact involved in the business process, and the fourth section briefly
compares our approach to software engineering methodologies. We end the
chapter with some conclusions.

3.1 The BAUML Framework

As we have just mentioned, the modeling approach we propose is based on
representing the BALSA dimensions using UML and OCL: UML class dia-
grams for business artifacts; UML state machine diagrams for lifecycles; UML
activity diagrams for associations, and OCL operation contracts for services.
We call our approach BAUML (BALSA UML, for short).

Figure 3.1 shows the dimensions in the BALSA framework and their rep-
resentation in our approach. Roughly, our methodology behaves as follows.
Business artifacts correspond to some of the classes in the class diagram. For
each artifact, a state machine diagram is defined stating its lifecycle. Then,
each transition of the state machine diagram is further specified by means of
an activity diagram determining the associations between the services or tasks
of the artifact. Finally, the behavior of the atomic activities or tasks from each
activity diagram is defined through an operation contract.

The remainder of this section presents in more detail our methodology for
artifact-centric business process modeling using the BAUML approach. We
will illustrate it by means of an example based on a city bicycle rental system,
such as Bicing in Barcelona. Bicing users may take a bicycle, anchored in one
of the many stations throughout the city, and return it to another station after
the user reaches his destination. To keep it simple, we will assume that if a
user returns a bicycle to a station immediately after it has been picked up, then
the bicycle is not in good shape and it needs to be checked and repaired.

3.1. The BAUML Framework 35

Class Diagram

(Artifacts)

State Mach. Diag.

(Lifecycles)

Operation Contracts

(Services)

Activity Diagram

(Associations)

Figure 3.1: Representation of the BALSA dimensions in our approach, adapted
from [64].

3.1.1 Business Artifacts as a Class Diagram

Business artifacts represent the relevant data for the business. A business
artifact has an identity, which makes it distinguishable from any other artifact,
and can be tracked as it progresses through the workflow of the business
process execution. It will also have a set of attributes to store the data needed
for the execution. Business artifacts may be related to other business artifacts
and objects.

We make the following distinction between artifact (or business artifact)
and object. An artifact is an element whose evolution results in relevant states
from the point of view of the business. These states are made explicit and
appear in the lifecycle of the artifact. In contrast, an object may be created,
deleted and updated by the process but these changes do not correspond to
relevant, explicit states from the point of view of the business.

In order to represent the artifacts, the objects and the relationships between
them we opt for the UML class diagram, which allows us to represent them
graphically. Each artifact and object will correspond to a class. To distinguish
them clearly from objects, artifacts will have stereotype «artifact».

Each artifact and its states will be part of a hierarchy. The artifact will
be the top class in the hierarchy, and the leaves will correspond to the states.
They are dynamic subclasses, so that the artifact can change its type from one
subclass to another as it evolves. They must fulfill the disjointness constraint
(since we consider that an artifact cannot be in two states at the same time),
but they can fulfill the completeness constraint (i.e. the artifact must have one
of its subtypes) or not. If the artifact has a multi-level hierarchy, these rules

36 Chapter 3. Artifact-centric Business ProcessModeling in UML

apply to all the levels. See for instance Figure 3.4.
Although the use of these dynamic classes may be controversial, because

of the implementation problems when changing an object from one class to
another, we are modeling the business process from an analysis perspective,
focusing on what the process does and not on the how (i.e. the implementation
details).

The advantage of using a hierarchy of subclasses to represent the poten-
tial states of an artifact is that it is possible to represent the attributes and
relationships that are needed in each of the possible states while keeping the
artifact’s original identifier and the relationships that are common to all states
(or several substates).

Apart from classes (which includes artifacts and objects) and relationships,
the UML class diagram also allows to represent integrity constraints in a
graphical way, e.g. the cardinalities in the relationships. However, those
constraints that cannot be represented graphically should be written in OCL
to ensure their formality. However, they could also be specified using natural
language for easier readability1.

The class diagram for our Bicing example can be seen in Figure 3.2. In
this case we have only one artifact, Bicycle, marked with the corresponding
stereotype. Apart from the business artifact, there are several objects, such as
AnchorPoint (identified by number and Station) and User (identified by id). We
have kept things simple and the classes have few attributes.

The business artifact Bicycle has three subclasses: Available, InUse and Un-
usable2, which keep track of the different stages of the Bicycle while containing
information which is relevant only for that particular stage. For instance, when
a bicycle is InUse, it is linked to a certain User and has an attribute that stores
when it is expected to be returned. As shown in Figure 3.2, these subclasses
also require restrictions to ensure that the dates are coherent.

3.1.2 Lifecycles as State Machine Diagrams

The lifecycle of a business artifact states the relevant stages in the possible
evolution of the artifact, from inception to final disposal and archiving. As
artifacts cannot evolve from one state to another randomly, the state machine
diagram shows how the transitions from one state to the next are triggered.

1Note that if natural language is used then the formality is lost and the reasoning explained
in later chapters cannot be applied.

2These subclasses should be called AvailableBicycle, InUseBicycle, etc. We use instead shortened
names for our convenience.

3.1. The BAUML Framework 37

 id : String
 inServiceSince : Date

<<artifact>>
Bicycle

 id : String
 name : String
 creditCard : Natural
 validUntil : Date

User

 number : Natural

AnchorPoint

 startTime : DateTime

BicycleRental

 expectedReturn : DateTime

InUse

 unsusableSince : Date

Unusable

 date : Date

Blacklisted

 lastReturn : Date [0..1]

Available

 id : Natural

Station

BicycleState

0..1

1

1

1..*
belongs to

1

0..1 0..1

1

{xor}unusable bike is in

{disjoint, complete}

is in

1. Bicycles, Stations and Users are identified by their id:
context Bicycle inv: Bicycle . allInstances ()−>isUnique(id)
context User inv: User.allInstances ()−>isUnique(id)
context Station inv: Station . allInstances ()−>isUnique(id)

2. AnchorPoint is identified by its number and Station:
context Station inv: self .anchorPoint−>isUnique(number)

3. inServiceSince must be earlier or equal to lastReturn, startTime, and date in Unusable:
context Available inv: self . lastReturn >= self . inServiceSince
context InUse inv: self .expectedReturn >= self.inServiceSince
context Unusable inv: self .unusableSince >= self.inServiceSince

4. expectedReturn must be later than startTime:
context BicycleRental inv: self .startTime < self . inUse.expectedReturn

5. The startTime of a BicycleRental must be within the user’s validity period validUntil:
context BicycleRental inv: self .startTime <= self .user.validUntil

Figure 3.2: Class diagram of Bicing with the corresponding integrity con-
straints.

38 Chapter 3. Artifact-centric Business ProcessModeling in UML

<<artifact>>
Superclass

Subclass1 Subclass... SubclassN

state{disjoint, incomplete}

Figure 3.3: An example of incomplete hierarchy.

<<artifact>>
Superclass

Subclass1 Subclass... SubclassN

SubclassN-1 SubclassN-... SubclassN-M

{disjoint, complete} subclassN_state

state{disjoint, incomplete}

Figure 3.4: An example of incomplete, multi-level hierarchy.

This state machine diagram will have a set of states, a set of events, a set of
effects and a set of transitions between pairs of states.

Given an artifact, the states in the state machine diagram will correspond
to its subclasses in the class diagram if the hierarchy is complete. If it is
incomplete, then the state machine diagram will have another state for the
superclass. In this context, the state that corresponds to the superclass will
represent an instance of an artifact that does not have any of the subtypes.
These rules apply to any multi-level hierarchy in the artifact.

For instance, if we have the hierarchy shown in Figure 3.3, there would be
the following states in the corresponding state machine diagram: Superclass,
Subclass1, Subclass..., SubclassN.

On the other hand, if we had a multilevel hierarchy such as the one shown
in Figure 3.4, the states would be the following: Superclass, Subclass1,

3.1. The BAUML Framework 39

Subclass..., SubclassN-1, SubclassN-..., SubclassN-M. Notice that now
we have no corresponding state for subclass SubclassN: the reason is that
SubclassN is the superclass of a complete hierarchy, and therefore a instance
of type SubclassN will always have one of its subtypes: either SubclassN-1,
SubclassN-... or SubclassN-M.

Note that we do not consider compound states nor orthogonality for the
definition of the lifecycle dimension. We assume that an artifact can only be in
one state at a certain point in time from the point of view of its evolution. This
tallies with the way the class hierarchies for the artifacts have been defined.

Apart from the states that correspond to the subclasses (or superclass in
some cases), we also have an initial and a final state.

The state machine diagram represents the transitions between states. Each
transition will have a source state and a target state. Moreover, it may also have
an OCL condition over the class diagram, an event and a tag representing the
result from the execution of the event. The initial transitions are those which
have the initial state as source and result in the creation of a new artifact
instance. We differentiate between three types of transitions (the elements
inside parenthesis are optional):

1. ([OCL]) ExternalEvent ([tag])

2. ([OCL]) TimeEvent (/ Effect)

3. [OCL] (/ Effect)

The first transition type occurs when ExternalEvent takes place and the
OCL condition (if there is any) is true. If there is a tag, then the result of the
execution of ExternalEvent must coincide with tag for the transition to take
place. The second transition type will be triggered when there is a TimeEvent
and the OCL condition is true. If there is an Effect, the changes specified by
it will also be made. Finally, the last transition type is similar to the second
excepting the occurrence of a time event. These transition types cover the
types of transitions allowed in the UML specification that are significant at the
specification level, as explained in [96].

An ExternalEvent will have as input parameters the artifacts in whose
transitions it appears or the identifiers of those artifacts. The details of the
execution of these events and their respective tags (if any) will be defined in
an activity diagram.

A tag is a user-defined expression which provides information about the
execution of the activity diagram. In most cases, there are only two tags

40 Chapter 3. Artifact-centric Business ProcessModeling in UML

needed, success and fail, which will denote the successful or unsuccessful
execution of the activity diagram representing the external event3. However,
more tags could be added if necessary, e.g. tag cancel.

Effects correspond to atomic tasks that have as input parameters the ar-
tifacts involved in the transition. OCL is an OCL expression which starts
from self or Class.allInstances()->... where Class is any of the classes
in the class diagram. A TimeEvent represents an occurrence of time. We
distinguish between relative and absolute time expressions. An absolute ex-
pression has the form at(time_expression); a relative expression has the
form after(time_expression).

Notice that this state machine diagram does not follow exactly the UML
standard described in [67]. This is due to the fact that it has tags, which we use
to take into consideration the outcome of the event. In traditional UML state
machine diagrams, events are atomic and there is no need for such conditions.

In addition, we also allow more than one outgoing transition from the
initial node. This is useful when the artifact can be created in different ways.
Alternatively, this situation could be represented using one outgoing transition
from the initial node, leading to a state called InitialState. From this state, we
could have the outgoing transitions that start from the initial node and leave
the rest of the state machine diagram as it is. However, representing the
lifecycles in this way does not contribute any relevant information and adds
complexity to the final diagram.

Figure 3.5 shows the state machine diagram representing the evolution of
the artifact Bicycle. When a bicycle is created (Register New Bicycle), it is in state
Available, and ready to be picked up. If a user does pick up a bicycle (event
Pick Up Bicycle), there are two possibilities: either everything goes smoothly
and he takes it with him (tag success), or the bicycle is in bad shape and the
pick-up fails (tag fail). In the first case, the bicycle is InUse while in the second
case it is Unusable. While a bicycle is in state InUse, it will become Available
again when the user returns it (Return Bicycle).

When a bicycle is Unusable, it needs to be repaired (Repair Bicycle) in order
to become available again. There are two possible outcomes. If the bicycle
is repaired successfully (tag success) it changes its state to Available. If, on the
other hand, it is beyond repair (tag fail), the bicycle is destroyed and deleted
from the system.

3We assume that in both cases the tasks in the activity diagram execute correctly (i.e. no
constraints or preconditions are violated). The tag represents the outcome of this execution from
the point of view of the business.

3.1. The BAUML Framework 41

Unusable

Available InUseReturn Bicycle

Repair Bycicle [fail]

Repair Bicycle [success]

Pick Up Bicycle [fail]

Pick Up Bicycle [success]

Register New Bicycle

Figure 3.5: State diagram of Bicycle.

3.1.3 Associations as Activity Diagrams

As we have just mentioned, external events in a state machine diagram consist
of a set of services or tasks, that is, they are not atomic. Consequently, for each
external event we need to specify the services it consists of and the associations
between them. Associations in the BALSA framework establish the conditions
under which services may execute.

For every ExternalEvent in a state machine diagram, there will exist ex-
actly one activity diagram. An activity diagram will have a set of nodes and a
set of transitions between those nodes. More specifically, the activity diagram
will have exactly one initial node and one or several final nodes. Transitions
will determine the change from one node to the next. Apart from a source
node and a target node, transitions may also have a guard condition and a
tag. The tag will determine the result of the execution of the activity diagram,
and the triggering of transitions in the state machine diagram depends on this
outcome.

We distinguish between the following node types:

• Initial Node: Point where the activity diagram begins

• Final Node: Point where the flow of the activity diagram ends.

• Gateway Node: Gateway nodes are used to control the execution flow.
We distinguish between decision nodes, merge nodes, fork nodes and join
nodes.

Decision and merge nodes deal with several paths which are mutually
exclusive: the former splits one path into several, the latter joins them.

42 Chapter 3. Artifact-centric Business ProcessModeling in UML

In contrast, fork and join nodes deal with parallel (i.e. simultaneously
active) paths. The first splits the flow into several, the second joins them.

• Activity: An activity represents work that is carried out. We differentiate
three types of activities:

– A task corresponds to a unit of work with an associated operation
contract. The operation contract will have a precondition, stat-
ing the conditions that must be true for the task to execute, and
a postcondition, indicating the state of the system after the task’s
execution. Both are formalized using OCL queries over the class
diagram.

– Material actions correspond to physical work which is carried out in
the process but that does not alter the system.

– Finally, a subprocess represents a “call” to another activity diagram,
and as such may include several tasks and material actions.

We assume the following: decision nodes and fork nodes have one in-
coming flow and more than one outgoing flow; merge nodes and join nodes
have several incoming flows and exactly one outgoing flow; activities have
one incoming flow and one outgoing flow; initial nodes have no incoming and
one outgoing flow; and final nodes may have several incoming flows but no
outgoing flow.

Guard conditions are only allowed over transitions which have a decision
node as their source. The guard condition may refer to either:

• The result of the previous task

• An OCL condition over the class diagram

• A user-made decision

On the other hand, tags are only allowed over those transitions that have
as target a final node, as they represent the outcome of the activity diagram
and connect it to the state machine diagram.

During the execution of the activity diagram we assume that the constraints
established by the class diagram may be violated. However, at the end of the
execution they must be fulfilled, otherwise the transition does not take place

3.1. The BAUML Framework 43
ActivityDiagram

Register New Bicycle

Return Bicycle

Repair Bicycle

Pick Up for Repair [DEPRECATED]

Pick Up Bicycle

<<material>>
Place Bicycle in

Anchor Point
Confirm Bicycle

Return

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

Change Status to
BeingRepaired

<<material>>
Move Bicylce to

Warehouse

Bi
cy

cl
e

Bicycle <<material>>
Bicycle

BicycleRental

Assign to
AnchorPoint

Create New Bicycle

<<Participant>>

Request Bicycle Get Bicycle

Confirm
Return

Confirm Pick-Up

Return to
Anchor Point

<<Participant>>

<<Participant>>

<<fail>>
[impossible to repair]

<<succeed>>[repaired]

<<fail>>

[bad shape]

[ok]

<<succeed>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.6: Activity diagram for Register New Bicycle

and the changes made during the execution of the activity diagram are “rolled
back” 4.

Finally, activity diagrams may also represent the main artifact or object
involved in each of the tasks and its participants (i.e. the role of the person
who carries out a particular activity) using swimlanes and notes, respectively.
Although this information is not strictly necessary to represent artifact-centric
business process models, in some instances it may be relevant to have it.

More specifically, swimlanes will provide additional information by in-
dicating the main business artifact or object that is involved in each of the
tasks or material actions. As tasks and material actions use the same notation
in UML activity diagrams, material actions are represented using stereotype
«material»in the swimlane or in the task itself. Tasks, on the other hand,
deal with the representation of the real-life artifact or object. They are shown
in the activity diagram as tasks without stereotypes in the swimlane. This
distinction is important, because we will only be able to specify services that
deal with informational resources (i.e. what we call tasks) and not material
actions. Moreover, we will use notes with stereotype «Participant» to show
the role/s of the people who carry out a particular task.

As we have mentioned, each external event in the state machine diagram
has its corresponding activity diagram. Figure 3.6 shows the activity diagram
of Register New Bicycle. First of all, the clerk provides the information of the
new bicycle and, after this, he assigns it to an anchor point. The main artifact

4This should not be confused with the fact that the activity diagram may end in tag fail. The
tag merely means that, following that path, the event has not fulfilled its goal, but not that the
changes made are not valid. However, if the activity diagram ends in tag fail and the integrity
constraints are violated, then every change made by it is “rolled back”, just like it would if there
were no tags or the tag was success.

44 Chapter 3. Artifact-centric Business ProcessModeling in UML

involved in both services is the Bicycle. In this particular case, both tasks are
atomic and deal with information and not material resources.

Pick Up Bicycle

Bicycle <<material>>
Bicycle

BicycleRental

Request Bicycle Get Bicycle

Confirm
Return

Confirm Pick-Up

Return to
Anchor Point

<<Participant>>

<<Participant>>

<<fail>>

[bad shape]

[ok]

<<succeed>>

Figure 3.7: Activity diagram for Pick Up Bicycle

Figure 3.7 represents the activity diagram of Pick Up Bicycle. The user
first requests a bicycle to the system and then he physically picks it up from its
anchor point. If the bicycle is not in good shape, he returns it to an anchor point
and then he confirms the return. Notice that in this case the activity diagram
ends in failure. On the other hand, if the bicycle is usable, he takes it with him
and confirms the return. Then the activity diagram ends successfully. It is
important to make this distinction between success and failure as depending
on the result of the activity diagram, the bicycle will change to state InUse or
Unusable, as shown in Figure 3.5.

In this particular diagram, there are two tasks or services that deal with
material resources: Get Bicycle and Return to Anchor Point, which correspond
to physically getting the bicycle from its anchor point and placing it on the
anchor point, respectively.

3.1.4 Tasks (Services) as Operation Contracts

In the context of the BALSA framework, a service is a unit of work meaningful
to the whole business process. Services create, update and delete business
artifacts. In turn, this may make artifacts evolve to a new stage meaningful
from the business perspective. In our approach, services correspond to the
tasks in the activity diagrams and the effects in the state machine diagram.

3.1. The BAUML Framework 45

As we have mentioned, each of the tasks in the activity diagrams will
have an associated operation contract. The same applies to effects in the
state machine diagrams. The contract will have a set of input parameters, a
precondition, a postcondition and may have an output parameter. The input
and output parameters may be classes or simple types (e.g. strings, integers).
If several tasks belong to the same activity diagram and their input parameters
have the same names, we assume that their value does not change from one
task to the next.

The task can only be executed when the precondition is met, and the post-
condition specifies the state of the system after the execution of the operation.
We also assume a strict interpretation of operation contracts to avoid redun-
dancies [104]. We deal with the frame problem by assuming that those classes
that do not appear in the postcondition keep their state from before its execu-
tion. Below we show the operation contracts for the tasks in Figure 3.7.

Listing 3.1: Code for task RequestBicycle
operat ion r e q u e s t B i c y c l e (b : B i c y c l e)
pre : −
post : b . oclIsTypeOf (InUse) and not b . oclIsTypeOf (Avai lable) and

b . oclAsType (InUse) . expectedReturn = now () + hour (3)

Task Request Bicycle (Listing 3.1) only changes the state of the given Bicycle
from Available to InUse. Notice that the precondition does not check if the
bicycle is indeed Available, as this is already guaranteed by the state machine
diagram (see Figure 3.5).

Listing 3.2: Code for task ConfirmPickUp
operat ion confirmPickUp (b : B icyc le , u : User)
pre : −
post : B i c y c l e R e n t a l . a l l I n s t a n c e s ()−> e x i s t s (x | x . oclIsNew () and x . user=u and

x . inUse = b . oclAsType (InUse) and x . s tar tTime = now ())

Confirm Pick Up, in Listing 3.2, creates the BicycleRental and assigns the
given User and Bicycle to it.

Listing 3.3: Code for task ConfirmReturn
operat ion confirmReturn (b : B icyc le , ap : AnchorPoint)
pre : −
post : not b . oclIsTypeOf (InUse) and b . oclIsTypeOf (Unusable) and

b . oclAsType (Unusable) . anchorPoint=ap and
b . oclAsType (Unusable) . unusableSince = today ()

In contrast to Confirm Pick Up, Confirm Return (Listing 3.3) changes the
bicycle state to Unusable and assigns it to an AnchorPoint. We do not check

46 Chapter 3. Artifact-centric Business ProcessModeling in UML

if the anchor point is empty, as the cardinality and xor constraints control
this. This task is executed when the user decides to return the bicycle before
confirming the pick up, probably because the bicycle is in bad shape and
cannot be used.

Notice that the bicycle given as input has the same name in all the operation
contracts. We assume that it refers to the same bicycle.

3.1.5 A Note on the Models

This section has presented our framework for modeling artifact-centric busi-
ness processes. We have used a set of models based on a combination of the
UML and OCL languages. However, as long as the semantics of the diagrams
are preserved, the dimensions in the BALSA framework could be represented
using other alternatives.

For instance, in the case of the business artifacts, the class diagram could
be substituted by an Entity-Relationship (ER) [32] or an Object Role Modeling
(ORM) [59, 2] diagram. Both diagrams also allow defining the artifacts, the
objects and their relationships in a graphical way.

Although we use a variant of UML state machines, any other notation
based on state machines would be useful to represent the lifecycles of the
artifacts.

For activity diagrams, there are many different available notations (as long
as they follow the semantics of our activity diagrams) such as BPMN [98] or
DFDs [134]. BPMN is probably the language that is most used to represent
business process models, and as such it offers a great variety of syntactic sugar
for the basic node types described above. Data-Flow diagrams (DFD) are
also another alternative, as they show the task and the inputs and outputs of
data required and generated by them. Figure 3.8 shows the type of nodes we
handle, with their corresponding representation in BPMN and UML.

Finally, for the tasks, alternatives could be using natural language, which
is not formal and may have errors, or using logic, which is complicated to
understand and use from the point of view of the business.

3.2 Formalization of the BAUML Framework

This section formalizes the BAUML framework presented in Section 3.1 and
is structured according to the diagrams that we use for each dimension in the
BALSA framework. We will use it in the remainder of this thesis.

3.2. Formalization of the BAUML Framework 47
B

P
M

N
U

M
L

Initial Node Final Node Task Sequence
Flow

Decision & Merge
Nodes

Fork Node
Join Node

Subprocess Material
Action

Figure 3.8: Nodes that we use in the activity diagram

3.2.1 Class Diagram and Integrity Constraints

M is a UML class diagram, in which some classes represent (business) artifacts.
Given two classes A and B, we say that A is a B, written A vM B, if A = B
or A is a direct or indirect subclass of B inM. Furthermore, given a class A
and a (binary) association R in M, we write A =M ∃R (A =M ∃R− resp.) if
A is the domain of R (image of R resp.) according toM. We also denote by
R|1 and R|2 the role names attached to the domain and image classes of R. We
denote the set of artifacts in M as artifacts(M) and, when convenient, we
use artifacts(B) interchangeably. Each artifact is the top class of a hierarchy
whose leaves are subclasses with a dynamic behavior (their instances change
from one subclass to another). Each subclass represents a specific state in
which an artifact instance can be at a certain moment in time. We denote by
a-classes(M) (a-classes(B) resp.) the set of such subclasses, including the
artifacts themselves. These subclasses must fulfill the disjointness constraints
(i.e. they must have at most one of the subclasses type at a certain point in
time.) Given a class S ∈ a-classes(M), we denote by artS the class S itself if S
is an artifact, or the class A if A is an artifact and S is a possibly indirect subclass
of A. Given an artifact A ∈ artifacts(M), we denote by a-states(A) the set of
leaves in the hierarchy with top class A if the hierarchy is complete (i.e. every
superclass must have one of the subtypes). If the hierarchy is incomplete,
a-states(A) will include the set of leaves and the superclass. We denote the
classes in M as classes(M), and the associations in M as associations(M).
When convenient, we may refer to them as classes(B) and associations(B).

Apart from the classes and associations, a class diagram will also have a set
of graphical and textual integrity constraints. The latter will be represented in
OCL. We denote both graphical and textual constraints as O.

48 Chapter 3. Artifact-centric Business ProcessModeling in UML

3.2.2 State Machine Diagrams

S is a set of UML state machine diagrams, one per artifact in artifacts(M).
More formally, for each artifact A ∈ artifacts(M), S contains a state transition
diagram SA = 〈V, vo, v f ,E,X,T〉, where V is a set of states, vo ∈ V is the initial
state, v f ∈ V is the final state, E is a set of events (either external or time events),
X is a set of effects, and T ⊆ V × OCLM × E × C × X × V is a set of transitions
between pairs of states, where OCLM is an OCL condition overM that must
be true in order for the transition to take place and C is a tag on the result of the
execution of the event in E. Note that vo cannot have any incoming transition,
and v f cannot have any outgoing transition.

The states V′ ⊂ V of SA, such that V′ = V−{vo, v f }, exactly mirror the classes
in a-states(A), so that SA encodes the allowed event-driven transitions of an
artifact instance of type A from the current state to a new subclass (i.e. a new
artifact state). Moreover, the initial transitions starting from vo always result
in the creation of an instance of the artifact being specified by SA.

We distinguish three different kinds of transitions, labeled as follows (ele-
ments inside parenthesis are optional):

• ([OCLM]) ExternalEvent(a1, ..., an) ([C]), where a1, ..., an are the ar-
tifacts manipulated by ExternalEvent

• ([OCLM]) TimeEvent (/X)

• [OCLM] (/X)

In the first case, the transition will take place if OCLM is true when the
external event is received and the execution of the event results in tag C, if
any (its possible values are success and fail). In the second case, it will take
place if OCLM is true when the time event occurs. This transition will also
modify the contents ofM as stated by the effect X. The third case is similar,
but the transition does not require the occurrence of any time event.

OCLM is an OCL boolean expression overM, which must begin with self
or Class.allInstances()->..., where Class may be any c ∈ classes(M).
A TimeEvent represents an instant of time defined by an expression. This
expression may be relative with respect to another point in time or absolute.
If it is relative it uses expression after(time_expression); otherwise it uses
at(time_expression), as defined in [67]. ExternalEvent(a1, ..., an) must ap-
pear at least in a transition of the state machine diagram of each artifact ai.
Given a state machine diagram S ∈ S, we denote the set of external events in
S as extEvents(S).

3.2. Formalization of the BAUML Framework 49

The execution of external events and the tags C resulting from this execution
are driven by activity diagrams. Each effect X corresponds to an atomic task to
be performed when making the transition, and whose parameters are exactly
the artifacts involved in the transition.

Given an artifact A ∈ artifacts(M), we denote by conditions(A) the set
of conditions appearing in the state transition diagram SA, also consider-
ing all activity diagrams related to SA. We then define conditions(B) =⋃

A∈artifacts(M) conditions(A).

3.2.3 Activity Diagrams

P is a set of UML activity diagrams, such that for every state machine diagram
S = 〈V, vo, v f ,E,X,T〉 ∈ S, and for every event ε ∈ extEvents(S) there exists
exactly one activity diagram Pε ∈ P.

Pε is a tuple 〈N,no,n f ,F〉, where N is a set of nodes, no ∈ N is the initial
node, n f ⊂ N is the set of final nodes and F ⊆ N×G×C×N is a set of transitions
between pairs of nodes where C is a tag (success or fail) denoting the correct
or incorrect execution of the transition, and G a guard condition.

There are four different types of nodes n ∈ N in an activity diagram Pε: ini-
tial nodes (denoted as ini(Pε)), final nodes (final(Pε)), gateways (gateways(Pε)
and activities (activities(Pε)).

As we have seen, initial and final nodes indicate the points where the activity
diagram flow begins and ends, respectively. Gateways are used to control the
sequence flow. They may be either a decision node, a merge node, a fork node or
a join node.

An activity may be a subprocess, an (atomic) task or a material action. We
will denote the set of tasks of a certain activity diagram p as Tasks(p). Each
subprocess sp is defined by means of an additional activity diagram Psp; while
each task is associated to an operation contract, which expresses a precondition
on the executability of the task, and a postcondition describing its effect, both
formalized in terms of OCL queries overM. Material actions represent physical
work that is done in the process but that does not change the system.

We make the following assumptions over each activity diagram Pε: de-
cision nodes and fork nodes have one incoming flow and more than one
outgoing flow; merge nodes and join nodes have more than one incoming
flow and exactly one outgoing flow; activities have exactly one incoming and
one outgoing flow; initial nodes have no incoming flow and exactly one outgo-
ing flow; and final nodes have one or several incoming flows but no outgoing
flow.

50 Chapter 3. Artifact-centric Business ProcessModeling in UML

We only allow guard conditions over a transition f = 〈ns, g, c,nt〉 ∈ F if
ns is a decision node. Then, g may correspond to the result of task tk, where
f ′ = 〈tk, ∅, ∅,ns〉 ∈ F, to an OCL condition over M or to a label representing
a user-made decision. Similarly, we only allow c over f ∈ F such that f =
〈ns, g, c,nt〉 and nt ∈ final(Pε).

With a slight abuse of notation, given a state machine diagram S ∈ S, we
denote by PS ⊆ P the set of activity diagrams referring to all external events
appearing in S.

As we have explained previously, during the execution of an activity dia-
gram the constraints in Omay be violated, as we follow a strict interpretation
of operation contracts [104]. However, these must be fulfilled at the end of the
execution, otherwise the transition in the state machine diagram does not take
place and all the changes made are “rolled back”.

3.2.4 Tasks

T is a set of atomic tasks, each of which has an OCL operation contract. Its
semantics is that the task can only be executed when the current information
base satisfies its precondition, and that, once executed, the task brings the
information base to a new state that satisfies its postcondition. If, during the
execution of an activity diagram the precondition of one of the tasks is not met,
then we assume that the corresponding transition does not take place and that
no changes are made.

Given an artifact A ∈ M, we denote by tasks(A) the set of tasks appearing
in the state machine diagram SA, also considering all activity diagrams related
to SA. We then define tasks(B) =

⋃
A∈artifacts(M) tasks(A). Moreover, we assume

that every task in tasks(A) that does not belong to the activity diagram of an
initial transition has as input an instance of the artifact in Sa.

3.3 An Example with Two Artifacts

In the previous sections we have presented our framework (both intuitively
and formally) and illustrated it by means of a simple example, based on a
city bicycle rental system (Bicing) and which includes only one artifact. Our
framework can also logically handle business processes with more than one
artifact. In consequence, in this last section we expand the example to include
another artifact: User, in order to further illustrate our approach. We now
make the following assumptions:

3.3. An Example with Two Artifacts 51

• If a user takes a bicycle with him and does not return it within three days,
we consider that the user has stolen or lost the bicycle. For this reason,
the user is blacklisted and the bicycle is considered to be lost.

• A user can take more than one bicycle with him (three at most), so that
families can use more bicycles without having to register their children
as users.

The rest of this section presents how we would represent the example
using the BAUML framework. Although the main focus of the section is on
the example itself, we clarify some points regarding the interaction between
artifacts for some transition types.

3.3.1 Class Diagram

Figure 3.9 shows the class diagram with the changes and additions mentioned
above. In contrast with the previous example (see Figure 3.2) we now consider
that bicycles may be lost by a user when he does not return them by a certain
date. This is reflected in the diagram by the fact that Bicycle has a new subclass:
Lost.

Apart from artifact Bicycle, we have another artifact: User. User has three
different subclasses: Active, Idle and Blacklisted, and the hierarchy is disjoint
and complete, stating that a User must have exactly one of its subtypes (or
subclasses), just like in the case of Bicycle.

Because a User may have more than one bicycle rental, it may be the case
that a Blacklisted user may still have rented bicycles, an Active user has at least
one rental, and an Idle user has none.

3.3.2 State Machine Diagrams

As we have seen, there are two artifacts in the class diagram in Figure 3.9:
Bicycle and User. Each of them will have its own state machine diagram,
shown in Figures 3.10 and 3.11. Notice that each subclass of Bicycle and of
User in the class diagram in Figure 3.9 has the corresponding state in their
respective state machine diagram, as both hierarchies are complete.

The state machine diagram of Bicycle, shown in Figure 3.10 is very similar
to the one we saw previously. The main difference is the fact that now it
includes a new state: Lost. A Bicycle will change its state to lost if the bicycle is
not returned within three days of the rental, as stated in condition notReturned.
If, somehow, a lost bicycle is found, it then changes its state to Unsuable, as

52 Chapter 3. Artifact-centric Business ProcessModeling in UML

 id : String
 inServiceSince : Date

<<artifact>>
Bicycle

 id : String
 name : String
 email : String
 dateOfBirth : Date
 creditCard : Natural
 validUntil : Date

<<artifact>>
User

 number : Natural

AnchorPoint

 startTime : DateTime

BicycleRental

 expectedReturn : DateTime

InUse

 unsusableSince : Date

Unusable

 lostDate : Date

Lost

 date : Date

Blacklisted

 lastReturn : Date [0..1]

Available

 id : String
 address : String

Station

 lastRental : Date [0..1]

Idle Active

BicycleState

0..1

0..2

1

0..3

responsible

1..*

1

0..1

11

0..1 1..3

0..1

{xor}

is still using

{disjoint,complete}

has lost

belongs to

{xor}

{disjoint, complete}

has

UserState

unusable bike is in is in

1. Bicycles, Stations and Users are identified by their id:
context Bicycle inv: Bicycle . allInstances ()−>isUnique(id)
context User inv: User.allInstances ()−>isUnique(id)
context Station inv: Station . allInstances ()−>isUnique(id)

2. AnchorPoint is identified by its number and Station:
context Station inv: self .anchorPoint−>isUnique(number)

3. inServiceSince must be earlier or equal to lastReturn, startTime, and date in Unusable:
context Available inv: self . lastReturn >= self . inServiceSince
context InUse inv: self .expectedReturn >= self.inServiceSince
context Unusable inv: self .unusableSince >= self.inServiceSince

4. expectedReturn must be later than startTime:
context BicycleRental inv: self .startTime < self . inUse.expectedReturn

5. The startTime of a BicycleRental must be within the user’s validity period validUntil:
context BicycleRental inv: self .startTime <= self . active .validUntil

6. A User must be at least 18 years old:
context User inv: today() − self .dateOfBirth >= year(18)

Figure 3.9: Class diagram and integrity constraints for the Bicing example
with two artifacts.

3.3. An Example with Two Artifacts 53

Unusable

Available

Lost

InUse

Recover Bicycle

notReturned / Blacklist User

Return Bicycle

Repair Bycicle [fail]

Repair Bicycle [success]

Pick Up Bicycle [fail]

Pick Up Bicycle [success]
Register New Bicycle

Definitions:

• notReturned: after(day(3))

Figure 3.10: State machine diagram showing the evolution of the artifact
Bicycle.

we assume that, after being lost, it will require a checkup and probably some
repairs.

The evolution of a user (shown in Figure 3.11) is similar to that of a bicycle,
and it shares many of its events. However, notice that in some cases there are
conditions over the transitions. For instance, if an Active user returns a bicycle
(event Return Bicycle), the final state will depend on whether there is only one
bicycle left to return (#bicycles = 1) or more (#bicycles > 1).

The Interaction Between Artifacts

As we have seen in the class diagram in Figure 3.9, User and Bicycle are two
artifacts that are directly related to one another. Their state machine diagrams
have several events in common. We will now look at how they interact by
means of these events.

Previously we distinguished between three types of transitions:

1. ([OCL]) ExternalEvent ([tag])

2. ([OCL]) TimeEvent (/ Effect)

3. [OCL] (/ Effect)

We will first focus on the transitions of the first type. In our example, there
are three external events which appear in the state machine diagrams of both

54 Chapter 3. Artifact-centric Business ProcessModeling in UML

Blacklisted Active

Idle

missedReturn / Blacklist User

Recover Bicycle

[#bicycles = 0] Unblock User [fai]

Return Bicycle [#bicycles > 1] Return Bicycle

Pick Up Bicycle

[#bicycles = 1] Return Bicycle

Delete User

[#bicycles = 0] Unblock User [success]

missedReturn / Blacklist User

Pick Up Bicycle [success]

Register New User

Definitions:

• missedReturn: after(day(3))

• #bicycles refers to the number of bicycles the user has:
For source state Available: self.oclAsType(Active).inUse->size()
For source state Blacklisted: self.oclAsType(Blacklisted).inUse->size()

Figure 3.11: State machine diagram showing the evolution of the artifact User.

artifacts: Pick Up Bicycle, Return Bicycle and Recover Bicycle. External events
are triggered by a user who wishes to carry out a task (or several tasks), and
although we do not represent it explicitly in the state machine diagram, they
have as input the artifacts involved in the external event. In the case of Pick Up
Bicycle, it will require an Available bicycle and either an Idle or Active user, as
shown in both diagrams in Figures 3.10 and 3.11. For this particular external
event, there is no prior relationship between the user and the bicycle, as the
goal of the event is to assign a bicycle to a user.

Return Bicycle also involves a user and a bicycle, so its implicit parameters
are an Active or Blacklisted user and a bicycle that is InUse (see Figures 3.10 and
3.11). Unlike the previous external event, in this case the artifacts are related to
each other; that is, it is not any user that returns the bicycle, it is the user who
had rented it. For this reason, we have to ensure that the User and the Bicycle
involved in the transition are related. As we shall see in the following sections,
in this case we can obtain the user given the bicycle, and for this reason the
only input parameter in the tasks will be the bicycle.

Recover Bicycle would work similarly to Return Bicycle, as the User and
Bicycle involved in the transition must be related. Notice that one execution of

3.3. An Example with Two Artifacts 55

the external event triggers the appropriate transitions in both diagrams.
For transitions of types two and three, things are a bit more complex.

They can only take place when certain conditions are met or when time goes
by and, when this happens, an effect executes automatically and makes the
appropriate changes to the system. Therefore, following strictly the semantics
of transitions in state machine diagrams, these types of transition would be
triggered independently for each artifact. However, there should be only one
execution of the effect. For this reason, we will assume that given two artifacts
with their respective state machine diagrams, if there are two transitions with
exactly the same time event, OCL condition and effect, the execution of the
effect should only be triggered once.

Bearing this in mind, there is one transition in Figures 3.10 and 3.11 that
fulfills these criteria: after(day(3)) / Blacklist User. The goal of this
transition is to blacklist a user if he does not return a bicycle within 3 days
after taking it. In addition, it will also mark the bicycle as lost. Notice that it
does not make sense to execute the effects of this transition twice for the same
bicycle and user.

3.3.3 Activity Diagrams

This subsection will show some of the activity diagrams for the external events
in Figures 3.10 and 3.11. The remaining activity diagrams can be found in
Appendix A.2 on page 191.

Return Bicycle (see Figure 3.12) is very simple. First of all, the user places
the bicycle in an anchor point, and afterwards the bicycle return is confirmed.
The only task in the diagram is Confirm Bicycle Return.

Register New Bicycle

Return Bicycle

Repair Bicycle

Pick Up Bicycle

Recover Bicycle

Blacklist User

Register New User

Unblock User

Delete User

<<material>>
Place Bicycle in

Anchor Point

Confirm Bicycle
Return

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

Assign to
AnchorPoint

Create New Bicycle

Request Bicycle
<<material>>
Get Bicycle

Confirm
Return

<<material>>
Return to Anchor Point

<<material>>
Bring Bicycle to Station

Mark as
Unusuable

Mark Bicycle
as Lost

Mark User as
Blacklisted

Confirm
Pick-Up

Create New User

<<material>>
Pay Fine

Change User to Idle
<<material>>

Revise User History

Obain User Info
and Delete

[unforgivable]
<<fail>>

<<succeed>>[forgivable]

<<fail>>

[impossible to repair]

<<succeed>>
[repaired]

<<fail>>

[bad shape]

[ok] <<succeed>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.12: Activity diagram for Return Bicycle

Figure 3.13 shows the activity diagram for external event Unblock User. It
has three different activities: the first activity is a material action and consists
in revising the user’s history. If it is successfully revised and the user is
“forgiven”, the blacklisted user must then pay a fine (it is also a material

56 Chapter 3. Artifact-centric Business ProcessModeling in UML

action) and only, after this, the user’s state is changed to Idle. On the other
hand, if the user’s history is deemed to be unforgivable, no changes are made
and the user remains in state Blacklisted.

Register New Bicycle

Return Bicycle

Repair Bicycle

Pick Up Bicycle

Recover Bicycle

Blacklist User

Register New User

Unblock User

Delete User

<<material>>
Place Bicycle in

Anchor Point

Confirm Bicycle
Return

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

Assign to
AnchorPoint

Create New Bicycle

Request Bicycle
<<material>>
Get Bicycle

Confirm
Return

<<material>>
Return to Anchor Point

<<material>>
Bring Bicycle to Warehouse

Mark as
Unusuable

Mark Bicycle
as Lost

Mark User as
Blacklisted

Confirm
Pick-Up

Create New User

<<material>>
Pay Fine

Change User to Idle
<<material>>

Revise User History

Obain User Info
and Delete

[unforgivable]
<<fail>>

<<succeed>>[forgivable]

<<fail>>

[impossible to repair]

<<succeed>>
[repaired]

<<fail>>

[bad shape]

[ok] <<succeed>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.13: Activity diagram for Unblock User

3.3.4 Operation Contracts

Just like in the case of activity diagrams, many of the operation contracts do
not change from the ones that we had in our first example. In this section we
will show four different operation contracts which are part of various activity
diagrams, except for the last one, which corresponds to the effect Blacklist User.
The remaining operation contracts can be found in Appendix A.2.

The first contract specifies a task which is part of an external event exclu-
sive to artifact User. The second one corresponds to an operation contract
that changes from the one specified in the simpler version of the example in
Subsection 3.1.4. The third contract corresponds to the only task in Return
Bicycle, which is interesting because it involves both artifacts in our example,
and one depends on the other in this context. Finally, the last contract shows
the specification of effect Blacklist User, which also involves two interrelated
artifacts of different types (Bicycle and User).

Unblock User

The operation contract for task Change User to Idle is very simple. It basically
changes the user’s state to Idle without making any other changes. It does
not check if the user is blacklisted at precondition time because this is already
guaranteed by the source state in the state machine diagram.

3.3. An Example with Two Artifacts 57

Listing 3.4: Code for task Change User to Idle
operat ion changeUserToIdle (u : User)
pre : −
post : not u . oclIsTypeOf (B l a c k l i s t e d) and u . oclIsTypeOf (I d l e)

Pick Up Bicycle

The activity diagram for external event Pick Up Bicycle (see Figure 3.7) does
not change in the two-artifact version of the example. However, the operation
contract of the task Confirm Pick Up does require some changes. As artifact
User has now several states, when he rents a bicycle we need to ensure that his
state is Active. This is what is done in Listing 3.5.

Listing 3.5: Code for task Confirm Pick Up
operat ion ConfirmPickUp (b : B icyc le , u : User)
pre : −
post : B i c y c l e R e n t a l . a l l I n s t a n c e s ()−> e x i s t s (br | br . oclIsNew () and

u . oclIsTypeOf (Active) and br . a c t i v e=u . oclAsType (Active) and not
u . oclIsTypeOf (I d l e) and br . s tar tTime=now () and br . inUse =
b . oclAsType (InUse))

Return Bicycle

Listing 3.6 shows the operation contract for the only task in Return Bicycle
(Figure 3.12). As we have mentioned, Return Bicycle involves two different
artifacts - Bicycle and User - which are interrelated. The operation contract
below shows that, as we can obtain the user given the bicycle, the only input
(other than the AnchorPoint) is the bicycle itself.

The postcondition of the contract changes the bicycle state to Available and
assigns it to an AnchorPoint. There is no need to check if the AnchorPoint is
empty, because if it is not, no changes will be made to the system because
the integrity constraints in the class diagram will be violated, according to the
strict interpretation of operation contracts that we use [104].

Then, if the user related to the bicycle had exactly one rental at precondition
time, this implies that at postcondition time he must change his state to Idle,
as he will no longer have bicycle rentals.

Listing 3.6: Code for task Confirm Bicycle Return
operat ion ConfirmBicycleReturn (b : B icyc le , ap : AnchorPoint)
pre : −
post :
l e t u : User = b . oclAsType (InUse) @pre . a c t i v e . oclAsType (User) in

58 Chapter 3. Artifact-centric Business ProcessModeling in UML

not b . oclIsTypeOf (InUse) and b . oclIsTypeOf (Avai lable) and
b . oclAsType (Avai lable) . l a s t R e t u r n = today () and
b . oclAsType (Avai lable) . anchorPoint = ap and
(u . oclAsType (Active) . inUse@pre−>s i z e () =1 implies (u . oclIsTypeOf (I d l e) and
not (u . oclIsTypeOf (Active) and u . oclAsType (I d l e) . l a s t R e n t a l=today ()))

Blacklist User

Blacklist User corresponds to the only effect in the state machine diagrams in
our example. As effects are executed automatically, the only input parameters
that they have are the artifacts which they make changes to. In this case, there
are two parameters: the User and the Bicycle. As one is not independent of
the other (i.e. the user who is blacklisted is the one who has not returned a
certain bicycle in a specified time frame), the precondition of the task ensures
that they are related to each other. Notice also that, as the user may already
be blacklisted, the precondition considers both cases: Active user or Blacklisted
user.

The postcondition changes the state of bicycle to Lost and links the Lost
bicycle to user. In addition, it changes the state of user to Blacklisted, if he was
not already, and in this case it also ensures that the blacklisted user is related
to other bicycles he may still have rented and which cannot be considered yet
as lost.

Listing 3.7: Code for task Blacklist User
act ion B l a c k l i s t U s e r (b : B icyc le , u : User)
pre : (u . oclIsTypeOf (Active) implies b . oclAsType (InUse) . a c t i v e =

u . oclAsType (Active)) and (u . oclIsTypeOf (B l a c k l i s t e d) implies
b . oclAsType (InUse) . b l a c k l i s t e d = u . oclAsType (B l a c k l i s t e d))

post :
b . oclIsTypeOf (Lost) and b . oclAsType (Lost) . l o s t D a t e = today () and not

b . oclIsTypeOf (InUse) and
(u@pre . oclIsTypeOf (B l a c k l i s t e d) implies b . oclIsTypeOf (Lost) and

u . oclAsType (B l a c k l i s t e d) . l o s t −> inc ludes (b . oclAsType (Lost)))
and
(u@pre . oclIsTypeOf (Active) implies u . oclIsTypeOf (B l a c k l i s t e d) and not

u . oclIsTypeOf (Active) and u . oclAsType (B l a c k l i s t e d) . date = today () and
u . oclAsType (B l a c k l i s t e d) . l o s t −> inc ludes (b . oclAsType (Lost)) and
u@pre . oclAsType (Active) . inUse −> f o r A l l (b i | bi <> b implies
u . oclAsType (B l a c k l i s t e d) . inUse −> inc ludes (b i))

3.4. On the Relationship with Soft. Eng. Methodologies 59

3.4 On the Relationship with Software Engineering
Methodologies

After presenting the BAUML framework and using it to model an example
with two business artifacts, we believe it is interesting to give an overview
of our work in relation to some software engineering approaches, focusing
on some of the most well-known object-oriented analysis methodologies and
enterprise architecture frameworks. A detailed comparison, however, is out
of the scope of this thesis.

We will begin by looking at specific object-oriented analysis approaches
and then we will examine enterprise architectures.

3.4.1 Object-oriented Analysis

This subsection deals with some of the most well-known object-oriented anal-
ysis approaches. In particular, we will look at the work of Craig Larman [81],
OO-Method [100] and MERODE [120].

To begin with, we would like to acknowledge Craig Larman’s [81] influence
on our work. His work is based on the Unified Process (UP), which is a
software development methodology. The UP establishes different stages (e.g.
business modeling, requirements, analysis & design, etc.) in the development
of software and each of these stages has a different level of abstraction.

In particular, the analysis stage describes the domain of interest, answering
the question what should the system do?. This contrasts with the design phase,
which answers the how? question, that is, how the system is going to be
implemented [81]. As we have seen, we focus on the analysis stage, since in
BAUML we abstract away from the implementation.

For this stage, [81] uses the following diagrams to represent the static and
dynamic elements in UML: a class diagram shows the relevant concepts or
data and the system sequence diagrams specify the behavior. These sequence
diagrams consider the system as a black box, and as such the operations which
make up the sequence diagram are not assigned to objects. These operations
have pre and postconditions, which can be specified in OCL.

Note the similarities and differences of this approach to ours. To start with,
we use a class diagram in UML to represent the business artifacts, which is very
similar to the class diagram for the domain model. Secondly, although we do
not use system sequence diagrams, we also assume the system to be a blackbox
and we specify the meaning of the tasks using pre and postconditions in OCL.
In a sense, our activity diagrams have a similar role to the sequence diagrams,

60 Chapter 3. Artifact-centric Business ProcessModeling in UML

as they also establish an order for task execution. Finally, state machine
diagrams have a clearly defined purpose in our work (defining the lifecycle
for artifacts and acting as the starting point for the definition of the activity
diagrams representing the associations), whereas Larman [81] recommends
using them to model use cases or the behavior of dynamic classes, but does
not establish a clear pattern for their use.

The next approach, the OO-Method [100], uses an extended UML class
diagram to represent the data, state machines to show how the classes may
evolve, and a functional model which defines the meaning of the services or
tasks. These models are grounded on the OASIS framework to give them
formality.

Despite these similarities to our work (i.e. the use of a class diagram for
artifacts and the state machine to represent the lifecycles), there are several
differences, other than the notational ones. First, OO-Method requires the ser-
vices to be assigned to the classes and hence, it has a lower level of abstraction
than our approach. Secondly, attributes are restricted to three different types
which in turn impose limitations on the way that a certain attribute may be
modified. Thirdly, it does not use textual integrity constraints to complement
the class diagram. In our approach, the use of textual integrity constraints
helps us to avoid redundancy in the operation contracts, as we do not check
in the preconditions the conditions guaranteed by the class diagram and its
constraints.

On the other hand, the goal of the MERODE [120] approach to systems’
modeling is to be able to generate models without contradictions and errors, to
ensure their completeness and their validity. To do so, the method constructs
different views over a single model, by applying automatic or semi-automatic
construction techniques to obtain them. These views have been formally
defined in process algebra, and they are the following: an existing-dependency
graph, an object-event table and a finite state machine to show the evolution
of classes/data/objects.

The existing-dependency graph shows the structure of the system, similar
to a class diagram but representing the evolution over time of the classes/object-
s/data and their relationships. The object-event table indicates which events
have an impact on which objects, and the state machine shows the evolution
of the objects or data. In addition to this, the object-event table gives a very
generic definition of the impact (create, modify or delete) of what the event,
or task, does. Thus, it does not have the level of detail that we wish to have
in our model. Plus, events are atomic and there is no specific way to define
preconditions, or conditions to determine the execution of a task or event

3.4. On the Relationship with Soft. Eng. Methodologies 61

other than the state represented in the finite-state machine. Consequently, this
approach uses states as a way to limit the potential tasks or operations that
may execute over an artifact, which may lead to unnecessary states from the
point of view of our approach. Moreover, like OO-Method, MERODE does
not consider textual integrity constraints to complement the class diagram.

3.4.2 Enterprise Architecture

Another area related to our work is that of Enterprise Architecture. Entreprise
Architecture approaches tend to adopt a holistic view of the enterprise, cov-
ering the "what", "how", "who", etc. and ranging from a generic high-level-of-
abstraction view to more concrete, lower-level details.

ARIS (Architecture of Information Systems) started as a general business
process architecture and evolved into ARIS-HOBE (ARIS House of Business
Engineering) and later into the ARIS-House of Business Process Management
methodology, which covers from business process design to information tech-
nology deployment [117]. There are also several tools [121] available. As a
methodology, it covers more aspects than ours, but it does not have a specific
notation attached to it.

In contrast to ARIS, Archimate [80] is both a framework and a language for
enterprise modeling. One of its goals is to provide a uniform representation
for diagrams that describe enterprise architectures. According to this work,
in enterprise architecture models is better to have coherence and overview
than specificity and details, and for this reason, UML and BPMN are too
fine-grained.

The resulting Archimate model provides an overview of the enterprise’s
structure, by modeling three different layers: business, application and tech-
nology, and how they are connected to each other. In spite of the claims to the
formality of the language, according to [125] the behavioral constructs have
no precise defined semantics. In addition to this, there is no precise definition
for the services or tasks involved in the processes.

Our work also has some similarities to RM-ODP using UML (UML4ODP)
[70, 84]. RM-ODP is a framework for open distributed processing, and as
such it offers different viewpoints over a model. These are useful to provide
a variety of views (enterprise, information, computational, engineering and
technology) for different purposes, and they go from a higher level of abstrac-
tion, useful at the business level, to a lower level of abstraction, useful for the
implementation.

62 Chapter 3. Artifact-centric Business ProcessModeling in UML

As we have explained, our approach does not delve into the details of
the implementation and stays at a higher level of abstraction. However, the
diagrams that the BAUML framework and UML4ODP at the higher level of
abstraction use are similar. UML4ODP also uses class diagrams to represent
the concepts or object types (i.e. the artifacts), state machine diagrams to show
the evolution of those objects, and activity diagrams to illustrate the steps in
the different processes. However, unlike in our approach, the transitions in the
state machine diagrams do not correspond to processes. Moreover, the details
of the operations or tasks are shown by means of design sequence diagrams
which are at a lower level of abstraction than our approach. Consequently, it
lacks the process viewpoint of our approach and it does not provide a high-
level abstraction of operations as we would wish.

3.5 Summary & Conclusions

In this chapter we have presented a framework, BAUML, for modeling busi-
ness processes from an artifact-centric perspective. This proposal is based on
using a combination of UML and OCL models to represent all the dimensions
in BALSA and is summarized in Table 3.1.

BAUML

Business Artifacts UML Class Diagram & OCL Integr. Constr.
Lifecycles UML State Mach. Diagram
Associations UML Activity Diagrams
Services OCL Op. Contracts

Table 3.1: Representation of the BALSA dimensions in BAUML.

This framework has several advantages: it uses two languages, UML and
OCL, both of which are ISO standards. They allow us to define the business
process at a high level of abstraction and thus they are independent of the final
technological implementation. These languages, but more specially UML, can
be understood by the business modelers and developers. In addition, as we
have shown, our proposal has precise semantics and can deal with business
processes that contain more than one artifact.

Moreover, although our proposal is artifact-centric, it shares some char-
acteristics of process or activity-centric proposals, as the associations are rep-
resented using an activity diagram, which clearly shows the order for the

3.5. Summary & Conclusions 63

execution of the tasks, as in process-centric approaches. In addition to this,
there are already many CASE tools to aid in the definition of the diagrams
using UML and even OCL.

Finally, we have seen that BAUML shares some characteristics with ap-
proaches that deal with object-oriented analysis and enterprise architectures.
However, the main goal of our work was to define a way to model artifact-
centric business process models following the BALSA framework, and obtain-
ing a model or set of models whose correctness can be checked automatically.
These methodologies and languages add dimensions and elements which we
do not consider in our BAUML framework, so they could enrich it; how-
ever, our final goal is to check the correctness of the structural and behavioral
components of the process, abstracting away from other elements such as re-
sources, organizational units or other details which are only relevant for the
implementation.

Part III

Reasoning on Artifact-centric
Business Process Models

65

Chapter 4

Preliminaries of Reasoning

In the previous chapters we have presented a modeling framework, BAUML,
for artifact-centric business process models using UML and OCL. Our proposal
relies on the use of four different models - UML class diagram, UML state
machine diagrams and UML activity diagrams, plus OCL operation contracts
- to represent the four dimensions in the BALSA framework, which should be
present in any artifact-centric business process model.

The current and following chapters go further and deal with checking
the semantic correctness (i.e. they consider both the static and the dynamic
dimension) of these models. The different approaches that we use are meant
to check the correctness of the models before they are put into practice, thus
avoiding the propagation of errors to the final deployment of the process.

The present chapter is meant to be an introduction to reasoning on our
models. It first presents the basic concepts (e.g. syntactic vs semantic correct-
ness, validation vs verification) that we will use in the remaining chapters.
Afterwards, it reviews the state of the art in terms of reasoning on artifact-
centric business process models and on UML diagrams, as both topics are
closely related to our work.

4.1 Basic Concepts

The goal of this short section is to establish the meaning, in the context of this
thesis, of several terms that we will use throughout it. To begin with, when
we talk about reasoning on our models, we refer to the ability of checking that
they fulfill certain desirable properties.

67

68 Chapter 4. Preliminaries of Reasoning

We will particularly focus on the correctness of the model. We say that
a model is syntactically correct if it conforms to the syntax of the language
that is used. The structural correctness relates to whether the model avoids
structural errors such as lack of synchronization or deadlocks (see Figure 4.1).

Figure 4.1: Examples of structural errors.

(a) Deadlock

A

B

(b) Lack of sync

C

D

On the other hand, we say that a model is semantically correct if it repre-
sents the domain correctly. This includes, for instance, checking the model’s
consistency to avoid contradictions; and checking its minimality, in order to
avoid redundancies in the model. Moreover, to a certain degree, we are also
checking for the model’s completeness. Completeness is defined as ensuring
that all relevant information is included in the model.

Within the context of semantic reasoning, we distinguish between verifica-
tion and validation. These terms are used with varying meanings [21, 1], and
although they have similar definitions, it is important to differentiate them
clearly for the purpose of this thesis.

Boehm [21] summarizes the difference between verification and validation
of a product using the following questions. We can understand verification
as asking “Are we building the product right?” whereas validation would
ask “Are we building the right product?”. In the context of business process
modeling, verification would ask whether we are building the model right, and
validation if we are building the right model.

As [106] explains, verification checks the internal correctness of the model,
that is, it looks for contradictions and redundancies, whereas validation cor-
responds to checking the external correctness of the model, namely, it makes
sure that the model fulfills the requirements and that it corresponds to the
domain that it represents.

Therefore, semantic verification can be done automatically, because it
checks the internal correctness of the model and does not require any ad-
ditional information from the “outside world”. Semantic validation, on the

4.2. State of the Art 69

other hand, requires user intervention in order to make sure that the domain
or real world is represented correctly.

4.2 State of the Art

After having presented some concepts in the previous section, this section
analyzes the state of art related to checking the correctness of business process
models. In relation to this, Moreno et. al. [95] perform a literature review
of the works dealing with business quality. The work gives an overview of
the different topics related to business quality that have been researched and
points out some areas of improvement and research gaps. However, it does
not distinguish between artifact and process-centric approaches, nor it gives
the details of the techniques employed by the different works.

The remainder of the section is structured according to four different topics:
simulation, process model testing, syntactical reasoning and semantic reason-
ing on business process models. The last subsection summarizes the state of
the art related to reasoning.

4.2.1 Simulation

One way of checking the correctness of the business process models consid-
ering their data dimension is to use simulation techniques. However, most of
the existing works focus on optimizing and performing quantitative analysis
of the business processes rather than on validating or verifying them.

For instance, [41] uses simulations of runs of the business process based
on Petri nets to perform analysis of certain key indicators. Similarly, [13] runs
simulations, based on Petri nets, to identify interdependencies and the impact
between services when it comes to their availability. Additionally, [6] studies
the use of business process simulation to optimize the business process.

On the other hand, [111] uses process mining techniques to derive simula-
tion models from event logs (which reflect the real execution of the process),
integrating various perspectives (i.e. control-flow, data and performance) into
a single model. However, the uses of simulation are out of the scope of [111].

As we have seen, simulation is mainly used to optimize and quantita-
tively analyze business processes. In contrast, we are interested in checking
their correctness. Therefore, simulation techniques are complementary to our
goal, and they could be applied after checking the semantic correctness of the
models.

70 Chapter 4. Preliminaries of Reasoning

4.2.2 Process Model Testing

Model testing techniques can be used to test different properties of business
process models, including their correctness. In order to perform model testing,
we require input data which is provided to the model, and then the result of
the execution is compared to the expected result.

For instance, the authors of [130] use these techniques to check model
transformations for certain errors. Although there are techniques to validate
the whole transformation, they can easily lead to state explosion. For this rea-
son, the authors opt for a more manageable approach which can also provide
valuable information.

On the other hand, [22] performs a literature review of the existing ap-
proaches to process model testing. Although they can help to detect errors
in the models, they are not complete, in the sense that they only ensure the
correct result for certain input data. However, when the result is not what was
expected, they can detect errors and they have the advantage of avoiding state
explosion.

4.2.3 Syntactical & Structural Reasoning

When it comes to syntactical and structural reasoning on business process
models, the greatest part of research follows a process-centric perspective.
Most of this research has centered on detecting errors in the flow of activities
and, for this reason, many authors translate different workflow models into
Petri nets, which are formal.

For instance, [33] translates generic workflows into graphs in order to check
certain properties such as soundness, deadlock, etc., similar to what is done in
[83]. The most important difference between the two approaches is that [33]
deals with cyclic workflows, whereas [83] does not. A more informal approach
is used in [43], where EPCs (Event-driven Process Chains) are first reduced
and then translated into a Petri net. However, this approach may require user
intervention in order to determine whether a potentially conflictive situation
is erroneous or not.

[123] gives a formal definition of UML activity diagrams. To do so, it
maps the elements of activity diagrams, including the data flow, to colored
Petri-nets. Due to this, standard properties checked in Petri nets such as state
reachability can be checked in the activity diagrams. However, data is only
considered in terms of the flow of the diagram and no formal definition of the
tasks and their impact on the data is given.

4.2. State of the Art 71

A key paper dealing with structural reasoning is [3]. The authors study dif-
ferent variations of Workflow nets (similar to Petri nets) and how the different
notions of soundness apply to them. Although not focused on actually veri-
fying the workflows but rather on whether it is decidable or not to do so, the
article offers an overview of existing techniques to verify them (coverability
graph, invariants and graph reduction methods).

All these works make an important contribution by providing methods
for the verification of the business process models used, which are usually
based on Petri Nets, and their results can be applied to the models in our
approach. However, being process-centric, they do not deal with artifacts nor
the meaning of actions, both of which are key elements in our proposal.

4.2.4 Semantic Reasoning

As we have explained in the previous section, we are interested in performing
semantic reasoning, which, for us, consists in validating and verifying the
model. Although [62] does not deal with business processes, but rather on
service composition, it is interesting because it focuses on both verification and
validation. In this case, the services are specified using pre and postconditions
defined in Fluent Calculus as supported by a tool, Flux. Fluent Calculus is a
formal language but is not easy to understand. Flux has the ability of checking
whether a certain service composition can achieve a certain goal, and can also,
given a goal, return a service composition that fulfills it.

As the BAUML framework models artifact-centric business processes us-
ing a combination of UML and OCL models, the remainder of this section
examines semantic reasoning in two different areas directly related to our
work: artifact-centric business process models and UML diagrams. However,
we also analyze what we call data-aware approaches: works that, while not
explicitly artifact-centric, take the data into consideration when reasoning.

Data-Aware Approaches

There are some approaches that, although not specifically artifact-centric, do
consider the data, such as [8, 119, 87]. [119] deals with soundness in WFD-
nets (based on Petri nets) considering the read/write/delete operations in the
process. [8] detects errors in the flow by considering the evolution of data
from one state to the next. Given various Petri nets representing the evolution
of artifacts, [87] creates a valid choreography (i.e. an interaction sequence),
taking into consideration the policies that restrict the valid interaction and the

72 Chapter 4. Preliminaries of Reasoning

goal states. However, none of these works deals with the detailed meaning
of the tasks (or operations) and they do not have an underlying conceptual
schema representing the data and its relationships.

Similarly, [110] studies the conditions which guarantee the correctness of
the data flow when making changes to the control flow or the data flow of
a business process. However, both the data and the tasks themselves are
represented in a very simple way.

The goal of [73] is to check if the business process model fulfills certain
properties (i.e. compliance) that may take the data into consideration. To do
so, the authors create an abstraction of the model to avoid the state explosion
caused by the data. However, the structure of the data is not fully represented.

To perform the reasoning, the authors use model checking techniques ap-
plied to a state representation of the abstract system and a compliance rule
defined in logic. In case of a compliance violation, feedback is provided to the
user. There is a prototype tool that can perform these tests.

Semantic Reasoning on Artifact-centric BPM

Several approaches to reasoning on artifact-centric BPM use data-centric
dynamic systems (DCDSs), grounded on logic, as the basis for reasoning
[11, 27, 12]. [11] uses a relational database to represent the data, together
with a set of condition-action rules and actions defined in logic. In contrast,
[12] uses a Knowledge and Action Base defined in a variant of Description
Logics to represent this data. Similarly, [27] maps an ontology to a DCDS in
order to verify certain temporal properties expressed in a variant of µ-calculus.

[31] and [9] provide the basis for [11]. [31] represents artifacts in a database,
lifecycles are shown by means of condition-action rules, and actions’ (or ser-
vices’) pre and postconditions are represented as conjunctive queries. Prop-
erties of the data-centric model are expressed in logic using µL, a variant of
µ-calculus. [9] expands on [31] by adding inter-artifact and intra-artifact con-
straints in µL, and allowing the use of negation, arbitrary quantification and
Skolem functions in the actions’ specification.

In [36], artifacts are represented using a set of variables, which are updated
by services defined by pre and postconditions in first-order logic. This work
is actually a summary of the results described in [37] and [42]. The authors
check whether the model fulfills a set of properties defined in LTL-FO (a first-
order extension of linear-time temporal logic), which is not as powerful as µL.
Despite this, it is possible to represent integrity constraints such as primary

4.2. State of the Art 73

keys and foreign keys, in contrast to [31, 9]. Moreover, arithmetic constraints
are allowed in the services’ definition, something not permitted by [31, 9, 11].

Similarly, [15] also checks whether a deployed artifact system, defined in
logic, fulfills a property defined in FO-CTL (a first-order extension of CTL).
The fact that the artifact system has been deployed implies that it does not
deal with infinite data, but there is rather an upper bound on the number
of elements in each state. Unlike [37, 36, 42], it is not possible to represent
arithmetic constraints.

On the other hand, [55] goes as far as to define a specification language,
ABSL, based on CTL, to specify the artifacts’ lifecycle behavior and is able to
check if the model satisfies a certain property defined in ABSL. However, like
in the case of LTL-FO, CTL is not as powerful as µ-calculus.

Another alternative is [19]. It establishes a basis for reasoning on reach-
ability, dead-ends and redundancy. Artifacts are represented using a set of
attributes, an identifier and a state. Services (or tasks), consisting of precondi-
tions and conditional effects, are defined by means of predicates new, defined
and assignations between variables. Business rules are defined by means of
if rules. However, this proposal does not deal with actual data, but rather an
abstraction of it (hence the use of predicates new and defined).

All these works represent artifact-centric business process models in lan-
guages derived from logic. Consequently, the models under consideration are
formal, but they are not practical for business people. Moreover, they have
been proposed at a theoretical level and do not have a tool that implements
them.

In contrast, the Guard-Stage-Milestone (GSM) approach provides a more
business-friendly representation of artifact-centric business processes, and sev-
eral works [122, 60, 58] study reasoning on these models.

[122] studies the decidability of verification over GSM models by translat-
ing them into a DCDSs. However, the presented results are theoretical, as there
is no tool that can actually perform the reasoning. [60] presents a system to
model and execute artifact systems. However, to our knowledge, the system
is limited to simulating the behavior of the model given certain data, which
differs from the work in this thesis.

All of the works in [16, 57, 58] use a tool, GSMC, to reason on GSM models.
Although the tool is able to translate the GSM model into a symbol transition
system for model checking, several restrictions are imposed on the data types
and it only allows one instance per artifact [57]. [16] expands this work by
allowing agent-based semantics on the GSM model in order to be able to
verify the information about participants. In a similar way, [58] performs

74 Chapter 4. Preliminaries of Reasoning

model checking over GSM models from a multi-agent perspective; however
the bound placed on the number of objects may sometimes lead to unreliable
results when this bound is exceeded.

Similarly to the work presented in this thesis, [132] performs verification
over process models considering the meaning of the tasks. It uses BPMN
diagrams whose tasks are optionally annotated with preconditions and effects
defined in logic, and use an optional ontology to define the underlying data.
Time is not considered explicitly, but they have implemented a prototype tool
that can perform some verification tests. However, as neither the ontology nor
the details tasks are compulsory, the final results can only be partial or provide
an intuitive idea of potential issues.

A closer work to ours is detailed in [23]. Starting from models defined
in what the authors call artifact union graphs (a Petri-net like notation), they
verify state reachability and weak termination. The artifact union graphs
represent the states and the services that trigger the transitions between those
states. Details of the services are defined in pre and postconditions which
use a certain grammar. Constraints also use this grammar. They also have a
tool which is able to perform the verification. Although their approach deals
with several artifacts, the domain of the artifacts’ attributes is constrained and
the type of tests that can be performed is limited, as they only allow state
reachability and weak termination.

Finally, a completely different approach is presented in [86]. Instead of
checking the business process model’s conformance to certain rules follow-
ing a compliance by detection approach, the author uses a compliance by design
approach: it generates business process models that already comply with the
rules. However, it requires an initial business process model on top of which
a new model is built which fulfills the rules. This means that there may be
errors in the model which may not be detected. In addition, the notation used
to represent the artifact-centric models is based on Petri nets to represent the
lifecycle of the artifact, and no details of the tasks are given.

Semantic Reasoning on UML models

On the other hand, most of the proposals for reasoning on UML models deal
with only one diagram. For instance, [106, 103] focus on the class diagram, [34]
handles state-machine diagrams, and [44] focuses on activity diagrams. As
far as approaches examining various UML diagrams, [88] offers a systematic
literature review but only four of the analyzed papers perform reasoning on

4.2. State of the Art 75

more than one of the diagrams in our approach: they can handle class and
state machine diagrams.

Other approaches [105, 26, 56] consider not only the static structure of
the UML class diagram but also the OCL operations that modify it. On the
other hand, [34] transforms state machine diagrams into colored Petri nets and
verifies whether they fulfill certain properties defined in LTL o CTL.

[44] checks the consistency between UML activity diagrams and class dia-
grams. However, instead of dealing with the activity diagram’s actions specifi-
cation, it considers that the object flow acts as a precondition and postcondition
of the actions. These constraints are derived automatically from the diagram.
Therefore, it only focuses on create, read, write and update dependencies
among tasks.

Other approaches such as [124] check the consistency between different
UML diagrams using Description Logic, but targets very basic properties and
does not include the definition of the operations or the additional constraints
in the process.

Although not explicitly an artifact-centric approach, [109] studies the qual-
ity of business processes represented using UML activity diagrams. Despite
the similarity of their models with our framework, the goal of the paper is
different. We start from several UML models, whereas [109] starts from an
“informal” (i.e. described in natural language) UML activity diagram from
which a UML class diagram and the operation contracts for the tasks are
derived. The resulting models are analyzed to detect mainly syntactic and
structural errors.

4.2.5 Summary

As we have seen, existing research on reasoning on process-centric models
focuses on checking their syntactic and structural correctness. On the other
hand, reasoning on artifact-centric process models is normally oriented to-
wards validation, by checking whether the model fulfills certain desirable
properties. Although simulation may also be a way of checking the correct-
ness of artifact-centric business process models, most of the works actually
focus on optimization or quantitative analysis of the process. Process model
testing may be useful to detect some errors, but cannot guarantee that certain
properties are fulfilled by the model.

Moreover, most of the proposals that perform some kind of semantic rea-
soning represent artifact-centric process models in some variant of logic. This
results in a formal definition of the system which makes it possible to reason on

76 Chapter 4. Preliminaries of Reasoning

its specification. However, specifications in logic are low-level and complex,
and therefore difficult to understand and unpalatable for business people.

On the other hand, the GSM approach [122, 60, 58], is more modeler-
friendly and has a formal semantics. However, the existing tools that can do
some reasoning are limited [16, 57, 58].

Similarly, although [132] uses BPMN notation and an (optional) ontology
for the data and there is a tool for the reasoning, the final results are only
partial as the tasks are only partially annotated. [23] uses artifact union graphs
to represent business processes and uses a tool to perform verification tests.
However, the tests are limited to state reachability and weak termination.

Finally, after examining the literature that deals with semantic reasoning
on UML models, we have found that none of the existing works deal, globally,
with all the models in the BAUML framework.

Chapter 5

Reasoning Using Data-centric
Dynamic Systems

Given a BAUML model, our goal is to be able to ensure that it fulfills a certain
set of desirable properties. In particular, we wish to check that there are no er-
rors in the model and that it represents reality correctly. Unfortunately, despite
the advantages of the BAUML framework, there are no available methods to
reason with the models that are used.

Data-centric Dynamic Systems (DCDSs) are an alternative way of repre-
senting data-centric business process models. They provide a formal repre-
sentation at a lower level of abstraction than UML and OCL, but as shown in
[11] it is possible to apply model checking techniques to these models in order
to check if they fulfill a certain property.

For this reason, this chapter will present a way to translate a UML artifact-
centric BPM into a DCDS, with the final goal of checking the correctness of
the BAUML models. Figure 5.1 gives a general overview of this process.
Although, as of yet, there is no tool that can perform this type of reasoning
over DCDSs, this chapter shows the feasibility of our approach in terms of a
firmly established proposal external to our own work.

To do so, it first introduces some basic concepts of DCDSs and some as-
sumptions we make over our BAUML models. Afterwards it describes the
translation process required to obtain a DCDS from a BAUML model. The last
part of the chapter focuses on the types of reasoning that can be performed
with the DCDS and the results that can be obtained.

77

78 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Figure 5.1: General overview of the reasoning process using DCDSs

5.1 Background

This section presents the required background for this chapter. It begins by
introducing DCDSs and an intuitive mapping between the BALSA framework
and DCDSs. After this, it details the assumptions that we make over our
models before the translation process begins.

5.1. Background 79

5.1.1 An overview of Data-centric Dynamic Systems

A relational Data-centric Dynamic System (DCDS) [11] is a tuple S = 〈D,P〉,
whereD corresponds to the data layer and P to the process layer. More specifi-
cally, the data layerD is defined as a tupleD = 〈C,R,E,I0〉, such that:

• C is a set of values.

• R is a database schema containing a finite set of tables {R1, ...,Rn}.

• E is a finite set of equality constraints of the form Qi →
∧

j=1,..,k zi j = yi j,
where:

– Qi is a domain-independent first-order query overRusing constants
from the active domain adom(I0)1 ofI0. The adom(I) ofI is a set of
constants or values c such that c ∈ adom(I) if and only if c appears
in I.

– zi j and yi j are free variables or constants in adom(I0).

• I0 represents the initial instance of the database schema. Therefore, it
conforms to R and satisfies E.

On the other hand, the process layer is a tuple P = 〈F ,A, %〉 such that:

• F is a finite set of functions. They represent the interface to external
services.

• A is a finite set of actions. They are in charge of evolving the data layer.
They are executed sequentially and are atomic. An action α ∈ A has the
form α(p1, ..., pn) : {e1, ..., em}, where:

– α(p1, ..., pn) is the signature of the action, where α is the action’s name
and p1, ..., pn represent action parameters.

– {e1, ..., em} is a set of effects. They take place simultaneously. Each
effect ei is defined as q+

i ∧Q−i Ei, where:

∗ q+
i ∧Q−i is a query overR. Its terms are variables, action param-

eters, and constants from the active domain (adom) of I0. q+
i is

a union of conjunctive queries and Q−i is a first-order formula.
Its free variables appear in q+

i .

1Without loss of generality, we assume that all constants appear in I0.

80 Chapter 5. Reasoning Using Data-centric Dynamic Systems

∗ Ei is a set of facts forR. It may include terms in adom(I0), input
parameters, free variables of q+

i and function f calls, where
f ∈ F .

• % is a finite set of condition-action rules, defined as Q 7→ α:

– Q is a first-order query over R. Its free variables are the parameters
of α. Its other terms can be quantified variables or constants in
adom(I0). Notice that Q refers to the content in the database schema
R.

– α is an action inA.

5.1.2 Mapping DCDSs to the BALSA Framework

To facilitate the understanding of DCDSs, we map the dimensions in the
BALSA framework to their representation in a relational DCDS. Table 5.1
summarizes this mapping.

DCDS

Business Artifacts DB Schema
Lifecycles CA Rules
Associations CA Rules
Services Actions

Table 5.1: Intuitive representation of the BALSA dimensions in DCDSs

Because business artifacts contain the static information for the business,
they will be part of the data layer. In DCDSs they are represented as a set of
tables in a relational database schema R. The restrictions over the database
schema will be specified as a set E of equality constraints of the form Qi →∧

j=1,..,k zi j = yi j.
Lifecycles show the evolution of a business artifact. As such, they do not

have a direct representation in DCDSs. However, condition-action (CA) rules
of the form Q 7→ α establish that, when the condition on the left-hand side of
the rule is true, the action on the right-hand side may be executed. Therefore,
they take part in defining the evolution of business artifacts, and could be
considered as a representation for the lifecycle.

5.1. Background 81

Associations indicate the conditions under which a service may be ex-
ecuted. Therefore, they should be represented using CA rules, like in the
previous case.

As services are in charge of making changes to the artifacts, the appropriate
way to represent them using DCDSs is by means of actions α. As we have
seen, actions can include calls to external services, represented as functions F .

Important

The semantics of DCDSs state that content which is not ex-
plicitly copied is lost. Therefore, if we wish to keep all the
information from one state to the next, we will have to add a
set of effects in charge of doing so.

Intuitively, we could assume that one way of performing the translation
process from BAUML to DCDSs is by mapping the models according to the
BALSA dimension which they represent. For instance, as business artifacts are
represented by means of a class diagram in UML and by means of a database
schema in DCDSs, it looks like we would be able to obtain the database schema
of a DCDS by translating the class diagram.

However, the translation process is not as straightforward as it seems and
requires additional considerations. Table 5.2 shows the elements of DCDS
which result from the translation of each of the UML and OCL models in
BAUML. Before detailing the translation, the next subsection states the as-
sumptions that we make over our BAUML model.

5.1.3 Assumptions

This section presents some assumptions that we make over our initial BAUML
models. To begin with, we only consider artifact-centric business process
models with one artifact type. Having two or more artifact types would require
tracking simultaneously the evolution of two artifact types adding much more
complexity. So we begin our approach to the problem by considering only one
artifact type and leave dealing with two artifact types for future work.

Secondly, of all the gateway nodes in activity diagrams, we only consider
decision and merge nodes. If we had parallel execution paths this would
result in state explosion of the possible combinations. Again, we leave those
for future work.

82 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Source Model Target Model
BAUML DCDS

Business Art. Class Diagr. DB Schema
OCL Constr. Eq. Constr

Lifecycles State Mach. Diagram
CA Rules

DB Schema
Actions

Associations Activity Diagrams
CA Rules

DB Schema
Actions

Services Op. Contracts
Actions

DB Schema
CA rules

Table 5.2: Translation of BAUML to the elements of a DCDS

In addition, we only allow two types of guard conditions: those stating
conditions over the class diagram, and those referring to user-made decisions.
Referring to the result of the previous task complicates the translation and in
many instances it could be rewritten as a class diagram condition.

Finally, we also assume that our models are syntactically and structurally
correct, as we wish to focus on checking their semantic correctness.

The remaining assumptions either correspond to limitations imposed by
the target model (the DCDSs) or simplifications that we make to facilitate the
translation process, but which could be straightforwardly implemented as part
of the translation process. Therefore, the latter do not limit the potential of the
reasoning in any way.

The list of limitations imposed by the DCDS are the following:

• As DCDSs cannot deal with time, we will assume that there are no time
events in the state machine diagram.

• The tasks that create artifacts should be the first ones in the activity
diagram. On the other hand, the tasks that delete artifacts should be the
last ones in the activity diagram. This is necessary to ensure the proper
tracking of the evolution through the tasks in the activity diagram in the
DCDS.

5.1. Background 83

• Furthermore, we do only consider data coming from a countably infi-
nite unordered domain, and that can only be compared for (in)equality.
We thus avoid any assumption on the structure of data domains, and
consider only string and boolean attributes2.

We also make the following simplifications over our initial models to facil-
itate the translation process:

• As material actions have no impact by themselves on the system, we
assume that the initial BAUML model does not have any material actions
in its activity diagrams. It should be straightforward to transform an
activity diagram with material actions into one without.

• We do not deal with subprocesses in the activity diagrams. A subpro-
cess is a node in the diagram which is decomposed in another activity
diagram. It would be equivalent to embedding the activity diagram that
corresponds to the subprocess in the original activity diagram3.

• There should not be two different tasks with the same names in a BAUML
model. This could be solved by appending the activity diagram’s name
to the task name.

• Tasks can only appear once in an activity diagram. That is, there cannot
be two task nodes with the same name, even if they are actually the
same task (i.e. they have the same precondition and postcondition). To
solve this, we can create two tasks with the same associated pre and
postcondition and a different name. Another option is to model the
diagram in a way in which the task only appears once.

• We will assume that effects in a state machine diagram are part of an
activity diagram with only one task, which will correspond to the effect
itself. This activity diagram will have the same name as the effect plus
“AD”.

• Although the state machine diagram shows how an artifact changes from
one state to another, we assume that the change of state is performed

2A boolean attribute can be considered as a special string attribute that can only be assigned
to the special strings true or false.

3Note that, as we are specifying elements from a high-level perspective, we do not assume
any kind of isolation property between the different diagrams. The tasks in each diagram will
manipulate the data given as input (which in this case will be provided by a user) and/or any
other data.

84 Chapter 5. Reasoning Using Data-centric Dynamic Systems

by the tasks in the activity diagram or the effects. In most cases this
redundancy is necessary in any case because the change to the new state
requires adding specific relationships or attributes.

• We also assume that the previous node of a final node is always a task,
to ensure that the algorithms provide the appropriate results.

In the remainder of this chapter we will use the Bicing example with one
artifact that we presented in Section 3.1.

5.2 Translating a UML Artifact-centric BPM to a DCDS

After presenting the preliminaries, this section describes the translation pro-
cess required to obtain a DCDS that is equivalent to a BAUML model, with
the final goal of checking the correctness of a BAUML model. For each of the
components in our BAUML representation, we show how its elements can be
translated into a DCDS.

Algorithm 1 translateBAUMLintoDCDS(B = 〈M,O,S,P,T〉)
CASet := ∅
actionSet := ∅
〈DBSchema,EC〉 = translateCDandICs(M,O) . Obtain DB and eq. constr. schema from class diagr.
〈DB,CARules〉 := translateSMD(S) . CA rules from state mach. diagram
DBSchema := DBSchema ∪DB
CASet := CASet ∪ CARules
〈DB,CA, actions〉 := translateADs(P) . Definition of state mach. diagr. actions
DBSchema := DBSchema ∪DB
CASet := CASet ∪ CA
actionSet := actionSet ∪ actions
〈DB, actions〉 := translateTasks(T)
DBSchema := DBSchema ∪DB
actionSet := actionSet ∪ actions
for all a ∈ actionSet do

addRulesForFrameProblem(a)
end for
return 〈DBSchema,EC,CASet, actionSet〉

Algorithm 1 shows the main steps involved in the translation process. It is
divided in steps according to the different components of our BAUML model.
The algorithm begins by translating the class diagram and the integrity con-
straints into a database schema and a set of equality constraints. Afterwards
it translates the state machine diagram, which will result in new tables which
are added to the database schema and a set of condition-action rules.

5.2. Translating a UML Artifact-centric BPM to a DCDS 85

Once this is done, the next step deals with the translation of the activity
diagrams. This will return a set of tables, condition-action rules and actions
that will be added to the already existing ones. Then we obtain the translation
of the tasks into actions, which may also generate additional tables to be added
to the schema. Finally, the last step in the diagram adds the necessary rules
to deal with the frame problem: that is, it copies the content of all the tables
that have not been modified by the action a, excepting table aux, which, as we
shall see, it is used to ensure that integrity constraints are only checked at the
end of a transition, that is, when an activity diagram finishes executing.

We will use the identifiers of the business artifact to track its evolution
through its lifecycle and the tasks that are part of the corresponding activity
diagrams.

The remainder of this section is structured according to the general steps
described above. Table 5.3 shows the correspondence between the sections,
their starting page, and the algorithms which may be part of the section show-
ing the details of the translation.

Section Page Algorithm

Translating the Class Diagram 85 N/A
Translating the State Machine Diagram 89 Algorithm 2
Translating the Activity Diagrams 92 Algorithm 3
Translating the Tasks 99 Algorithm 4

Table 5.3: Summary of the sections, their pages and the contained algorithms

5.2.1 Translating the Class Diagram

As we have seen, a class diagram M has a set of classes (classes(M)) and
associations (associations(M)). Apart from this, it also has a set of integrity
constraints O, represented either graphically or textually.

We need to translate all these elements into a DCDS. Considering that they
represent the static information in the system, they will correspond to the data
dimensionD in the DCDS. We explain below the main steps in this translation
process:

Step 1: Translate classes and associations UML class diagrams can be trans-
lated into relational database schemas following well-known techniques of

86 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Figure 5.2: Fragment of the class diagram in Figure 3.2.

Bicycle

PK id

Station

PK id

Unusable

PK,FK1 id

FK2 station
FK2 number

AnchorPoint

PK number
PK,FK1 station

Figure 5.3: Possible translation of the relationship between Unusable and An-
chorPoint into a DB schema. We want to avoid it.

database design [126]. Notice that we do not specifically require the tables to
be in any kind of normal form. We will make the following assumptions to
keep the translation coherent and, in turn, easier:

• Associations are always represented in one table, even if the multiplic-
ity in the relationship would allow them to be incorporated into the table
of one of its participants. For instance, Figure 5.2 shows a fragment of
the class diagram with classes Unusable (which is a subclass of Bicycle)
and AnchorPoint. The cardinalities state that an unusable bicycle will
always be assigned to exactly one anchor point.

Figure 5.3 shows a possible translation of these two classes into a database
schema. Notice that the relationship between Unusable and AnchorPoint
does not have its own table, but is represented by including a couple
of attributes (the identifiers of AnchorPoint) which are foreign keys to
AnchorPoint. We want to avoid this, and have a table for the relationship.
See Figure 5.4 for the final translation of the class diagram.

• Each subclass and superclass is always represented into its own table.
The table corresponding to the subclass will have the identifiers of its

5.2. Translating a UML Artifact-centric BPM to a DCDS 87

superclass (which, of course, are also its own identifiers) and a foreign
key to the table that corresponds to the superclass. In our example, we
would have a table for Bicycle, Unusable, Available and InUse.

Figure 5.4 shows the result of applying this first step to our Bicing example
presented in Section 3.1. As shown, each class and association is represented
in its own table4 and they are related by means of foreign keys. To keep the
translation shorter, we have only included the identifiers of each class and
relationship as attributes.

Bicycle

PK id

Available

PK,FK1 id

Station

PK id

BicycleRental

PK,FK2 userId
PK bikeId

Blacklisted

PK,FK1 id

Unusable

PK,FK1 id

AnchorPoint

PK number
PK,FK1 station

InUse

PK,FK1 id

User

PK id

AvailableIsIn

PK,FK1 id

FK2 apNumber
FK2 apStation

UnusableIsIn

PK,FK1 id

FK2 apNumber
FK2 apStation

Figure 5.4: Database schema containing the tables obtained in the first step to
store the information.

Step 2: Translate integrity constraints The second step translates the in-
tegrity constraints into equality constraints, if possible. This includes both

4Note that, for the purpose of this example, an exception has been made. The association
between Station and AnchorPoint is represented as a foreign key in table AnchorPoint.

88 Chapter 5. Reasoning Using Data-centric Dynamic Systems

textual constraints defined in OCL and graphical restrictions in the class dia-
gram. A way to do so is by using [106] as a basis. This work normalizes OCL
expressions into expressions of the form:

path-exp->select(e| body)->size() opComp k

before they are translated. Once a constraint ic has been normalized, it is
translated into logic. Notice that after the normalized expression expr is
obtained, [106] translates it to the denial form ¬ expr, which is exactly what
we will need later on.

However, there are some differences between this work and ours which
must be considered. In [106], attributes are part of binary predicates which also
include the artifact’s identifier. In the present work, the logic representation
of tables is a n-ary predicate that includes all the attributes. The expressions
have to be translated bearing this in mind.

Once the restrictions have been translated into logic, we need to transform
them in the following way (adapted from [10]):

1. Add an auxiliary table to the database schema, of the form aux(x, y).

2. Initialize aux(x, y) with 〈a, b〉 at the end of the execution of every activity
diagram. We only want to check their fulfillment at the end of the
execution, not while it is taking place. We will have to bear this in mind
when translating the tasks that make up the diagram.

3. For each expression IC obtained in the denial form, add the following
equality constraint: IC ∧ aux(x, y)→ x = y

For instance, the denial form of the covering (i.e. restriction complete in the
class hierarchy) constraint in our class diagram would be translated into logic
like this:

Bicycle(id) ∧ ¬(Unusable(id) ∨ Available(id) ∨ InUse(id)),

and afterwards, we would apply the rules defined above.
Notice, however, that equality constraints have a limitation: they cannot

be used to represent constraints that require greater than or less than symbols.
The primary and foreign keys that result from the translation of the UML

class diagram into a database schema should appear in the DCDS as equality
constraints. For instance, the equality constraints necessary to represent the
constraints related to association UnusableIsIn, would have the following form:

5.2. Translating a UML Artifact-centric BPM to a DCDS 89

UnusableIsIn(id,n1, s1) ∧UnusableIsIn(id,n2, s2) ∧ n1 , n2 ∧ aux(x, y) 7→ x = y
UnusableIsIn(id,n1, s1) ∧UnusableIsIn(id,n2, s2) ∧ s1 , s2 ∧ aux(x, y) 7→ x = y
UnusableIsIn(id1,n, s) ∧UnusableIsIn(id2,n, s) ∧ id1 , id2 ∧ aux(x, y) 7→ x = y

These constraints ensure that an unusable bicycle is assigned at most to
one anchor point, and that an anchor point has exactly one bicycle.

5.2.2 Translating the State Machine Diagram

As we have mentioned previously, given a state machine diagram s =
〈V, vo, v f ,E,X,T〉 ∈ S, our goal is to incorporate its information in condition-
action rules of the following form: Q 7→ α, where Q corresponds to a condition,
and α represents an action. When Q is true, then αmay take place. Intuitively,
given a transition t = 〈vs, o, e, c, x, vt〉 ∈ T, the source state vs and the OCL
condition o will be part of Q. The event e and its tag c (if any) and the effect x
will correspond to the action α.

We will follow this intuition for the types of transitions we can see below:

• ([OCL]) ExternalEvent ([tag])

• [OCL] (/ Effect)

Notice that, for the second type of transitions, the meaning in the DCDS
differs from the original one. Originally, when the OCL condition is true, the
transition always fires. According to the semantics of DCDSs, however, the
resulting rule merely indicates the action may execute.

Therefore, in order to ensure an accurate result of the reasoning pro-
cedure, the modeler should do the following. Given two transitions ti =
〈vsi , oi, e, c, ∅, vti〉 and t j = 〈vs j , o j, ∅, ∅, x, vt j〉, where vsi = vs j , then the condi-
tion oi in ti should be mutually exclusive with condition o j in t j. This ap-
plies to every pair of transitions of these types (i.e. ti = 〈vsi , oi, e, c, ∅, vti〉 and
t j = 〈vs j , o j, ∅, ∅, x, vt j〉). This will ensure that the only transition that can trigger
when o j is true is t j

5.

5Note that a model as described here with transitions ti = 〈vsi , oi, e, c, ∅, vti 〉 and t j =
〈vs j , o j, ∅, ∅, x, vt j 〉, where oi = o j and vsi = vs j would not make sense. ti = 〈vsi , oi, e, c, ∅, vti 〉

could never be triggered, as when oi became true, t j = 〈vs j , o j, ∅, ∅, x, vt j 〉 would be automatically
triggered. However, if we do not establish the restriction described above, then the results of
reasoning with the DCDS would be unreliable.

90 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Algorithm 2 shows the translation process to obtain the condition-action
rules corresponding to the state machine diagram. Its main steps are described
below.

Algorithm 2 translateSMD(S)
CA := ∅
s = 〈V, vo, v f ,E,X,T〉 ∈ S
PKi := getPrimaryKeyO f Arti f act(s)
DB := {BAStatus(PKi, state, transition)} . Step 1: Create tables for lifecycle
DB := DB ∪ {Busy(PKi)}
for all t = 〈vs, o, e, c, x, vt〉 ∈ T do . Step 2: Create the corresponding CA rules for each transition

if e is ∅ then
action := x

else
action := e

end if
if vs is vo then . vs is initial state

if o is ∅ then
CA := CA ∪ {¬Busy(PK′i) 7→ action()}

else
guard := translateOCL(o)
CA := CA ∪ {guard ∧ ¬Busy(PK′i) 7→ action()}

end if
else . vs is not initial state

if o is ∅ then
CA := CA ∪ {BAStatus(PKi, vs, ‘none’) ∧ ¬Busy(PK′i) 7→ action(PKi)}

else
guard := translateOCL(o)
CA := CA ∪ {BAStatus(PKi, vs, ‘none’) ∧ guard ∧ ¬Busy(PK′i) 7→ action(PKi)}

end if
end if

end for
return 〈DB,CA〉

Step 1: Encoding the states The first step in the algorithm creates a table
which will encode the states corresponding to the lifecycle. It will be used to
track the evolution of the artifact more easily. Each artifact BA will have a table
of the following form: BAStatus(PKi, state, transition), where PKi corresponds
to the artifact’s primary key and is a foreign key to that artifact, state will be
any of the states v ∈ V (except the initial and final states), which correspond to
the artifact’s subclasses, and transition corresponds to none or any event e ∈ E
or effect x ∈ X. transition is used to indicate the transition that is taking place
for an artifact6. Its value will correspond to the name of the external event or

6Remember that a transition may have an external event. External events are made up of
several atomic tasks represented in a state machine diagram, and therefore cannot be considered
as atomic.

5.2. Translating a UML Artifact-centric BPM to a DCDS 91

effect in the transition. Otherwise, when the artifact is not under the effect of
any transition, attribute transition will have value none.

We will also create table Busy(PKi) which will be used to ensure that, once
a transition for an artifact begins executing, no other transitions execute until
it finishes. PKi corresponds to the identifier of the artifact.

Step 2: Encoding the transitions After this, the algorithm iterates over the
transitions t = 〈vs, o, e, c, x, vt〉 ∈ T in the state machine diagram to obtain the
condition-action rules that will represent these transitions.

The general form of these rules will be the following:

BAStatus(PKi, vs, ‘none′) ∧ guard ∧ ¬Busy(PK′i) 7→ action(PKi), (5.1)

where BAStatus refers to the transition’s source state and guard to the guard
condition o in the transition, if any. The none in BAStatus ensures that the
artifact is not under the effect of any other transition.

action will correspond to the external event e or effect x in the transition.
Notice that action includes as parameters the primary key PKi of the artifact, as
these transitions take place over artifacts that have already been created. We
use PKi to keep track of the artifact’s evolution.
¬Busy(PK′i) will ensure that, if a transition is taking place, a new transition

does not begin execution.
There is one particular case. When the source state of the transition vs is an

initial node, the rule will have the following form:

¬Busy(PK′i) 7→ action() (5.2)

Notice that in this case action has no input parameters, as the artifact has not
been created yet. For the same reason, the condition part of rule 5.2 does not
refer to table BAStatus.

Below we can see two CA rules that result from the translation of the state
machine diagram in Figure 3.5 on page 41:

¬Busy(id′) 7→RegisterNewBicycle() (5.3)
BicycleStatus(id, ‘Available′, ‘none′) ∧ ¬Busy(id′) 7→ PickUpBicycle(id) (5.4)

The first rule corresponds to transition Register New Bicycle. It basically
states that the transition can be executed at any time as long as no other
transition is taking place. The second rule, on the other hand, states that if
table BicycleStatus contains an element with values Available and none (i.e. the

92 Chapter 5. Reasoning Using Data-centric Dynamic Systems

artifact is in state Available and not under the effect of any transition, hence
the none), and no other transition is taking place (¬Busy(id′)), then action
PickUpBicycle may execute over this artifact, identified by id. The remaining
rules would be similar to the second and can be found in Appendix B.2 on
page 197.

Notice that we should determine the effects of the actions that appear in the
CA rules generated by the algorithm. These actions are used to make explicit
the implicit connection between the state machine and activity diagrams. That
is, they will prepare the DCDSs to execute the actions corresponding to the
tasks in the activity diagram. The next section will specify the details of these
actions as they will require some tables corresponding to the activity diagrams
which have not yet been created.

5.2.3 Translating the Activity Diagrams

After translating the state machine diagram, we will do the same for the
activity diagrams. The translation process mirrors that of the state machine
diagram.

Algorithm 3 is in charge of this. It has three main steps: creating the
database tables to track the evolution of an artifact through the tasks of an
activity diagram (i.e. encoding the “states”), translating the associations in the
activity diagram to a set of condition-action rules (i.e. encoding the “transi-
tions”), and generating the effects for the initial actions that trigger the execu-
tion of the activity diagram.

Step 1: Encoding the “states” Like in the case of state machine diagrams, we
will also need tables to keep track of the evolution of an artifact through the
tasks in the activity diagram. For each p ∈ P we will have a table of the form
tableAD(PKi, lastTask), where tableAD is the name of p plus the suffix “ing”, PKi
corresponds to the artifact’s identifier and lastTask ∈ {Tasks(p) ∪ ‘none′}. This
table will be used to keep track of the last task that has executed in the activity
diagram. none is used when the activity diagram has not yet begun executing.

Step 2: Encoding the “transitions” Tasks execute in the context of an activity
diagram. Given an activity diagram p = 〈N,no,n f ,F〉, a task t ∈ Tasks(p) will
only execute when the previous task in the diagram has taken place. In
addition, if there is a guard condition on the edge leading to the task, this
guard condition must also be true. Finally, tasks have a precondition stating
the conditions that must be true for the task to execute.

5.2. Translating a UML Artifact-centric BPM to a DCDS 93

Algorithm 3 translateADs(P)
DB := ∅
actionSet := ∅
CASet := ∅
for all p ∈ P do

AD := getName(p)
tableAD := AD + ”ing” . The table will have the name of the AD + “ing”
PKi := getPrimaryKey(getArti f act(p))
DB := DB ∪ {tableAD(PKi, lastTask)} . Step 1: Create tables for activity diagrams
CARules := ∅
actions := ∅
for all t ∈ Tasks(p) do

pre := translateOCL(t.pre) . Obtains the precondition of the task
prevTasks := getPreviousTasks(t)
ADName := getActivityDiagramName(t)
tableAD := ADName + “ing′′
if t does not require split then . Simple case: Task does not require split

for all prevT ∈ prevTasks do
preart := true
if prevT is InitialNode then

Vs := getSourceState(p)
if Vs contains InitialState then

preart := ¬BA(PKi, ...)
end if
prevTName := ‘none’

else
prevTName := getName(prevT)

end if
guard := translateOCL(getGuard(prevT, t)) . Will return true if it is a user-made decision
CA := {tableAD(PKi, prevTName) ∧ pre ∧ guard ∧ preart 7→ t(PKi)}
CARules := CARules ∪ CA

end for
else . Complex case: Task requires split

for all prevT ∈ prevTasks do . Iterates over the previous tasks of t
preart := true
if prevT is InitialNode then . Obtains the name of the previous task

Vs := getSourceState(p)
if Vs contains InitialState then

preart := ¬BA(PKi, ...)
end if
prevTName := ‘none’

else
prevTName := getName(prevT)

end if
guard := translateOCL(getGuard(prevT, t)) . Will return true if it is a user-made decision
CA := {tableAD(PKi, prevTName) ∧ guard ∧ preart 7→ t1(PKi)} . CA rule to execute t1
CARules := CARules ∪ CA

end for
if t creates a class then

preimp := generateImpPre(t)
else

preimp := true
end if
CA := {tableAD(PKi, ‘t1’) ∧ pre ∧ preimp 7→ t2(PKi)} . Generates CA rule to execute t2
CARules := CARules ∪ CA

end if
end for

94 Chapter 5. Reasoning Using Data-centric Dynamic Systems

BA := getArti f act(p)
sourceStates := getSourceStates(p)
action := AD . The action will have the same name as the AD
header := action()
for all vs ∈ sourceStates do

if vs is InitialState then . Step 3: Create SMD actions
f x := {true tableAD(getPKi(), ‘none’)}
f x2 := {true Busy(getPKi())}
f xSet := f x ∪ f x2
f irstTask := getFirstTask(p)
CA := {tableAD(PKi, ‘none’) ∧ ¬BA(PKi, ...) 7→ f irstTask(PKi)}
CASet := CASet ∪ CA

else
f x := {true tableAD(PKi, ‘none’)}
f x2 := {true Busy(PKi)}
f xSet := f x ∪ f x2 ∪ {BAStatus(PKi, vs, ‘none’) BAStatus(PKi, vs,AD)}
f xSet := f xSet ∪ {BAStatus(PK′i , vs, trans) ∧ ¬(PKi = PK′i) BAStatus(PK′i , vs, trans)}

end if
action := 〈header, f xSet〉
actionSet := actionSet ∪ {action}

end for
end for
return 〈DB,CASet, actionSet〉

Therefore, there are three factors that need to be considered for task execu-
tion:

• The task’s precondition

• The previous task(s)’ execution

• Guard conditions (if there is a decision node)

Therefore, the generic form of the condition-action rules will be the follow-
ing:

tableAD(PKi, prevTName) ∧ pre ∧ guard ∧ preart 7→ t(PKi), (5.5)

where tableAD will keep information about the last task/action that has been
executed for the artifact identified by PKi, guard represents the translation of
any guard conditions that may result from a decision node, pre corresponds to
the precondition of task t, and preart represents the condition ensuring that the
artifact does not exist, if the task creates an artifact.

Overview on Task Splitting The tasks in our initial model rely heavily on
the use of user-provided input parameters. In DCDSs, the way to incorporate
fresh values into the system such as user input, is by calling services inF . This
is an important limitation in terms of the translation of our tasks T into DCDS

5.2. Translating a UML Artifact-centric BPM to a DCDS 95

Figure 5.5: Diagram representing the conditions which require a task to be
split.

actions α. As effects will be of the form q+
i ∧Q−i Tabler(..., f (), ...), where f ()

is the call to an external service to obtain the user-provided parameters, notice
that these values cannot be processed in any way by the task itself, as they
are obtained, in a sense, at postcondition time, while in our models they are
already available at precondition time.

Therefore, in order to solve this mismatch between BAUML tasks and
DCDS actions, what we can do is to define two actions for a single task.
Roughly, the first action will be in charge of obtaining the user input, and
the second action will perform the changes required by the postcondition.
However, we will only do this split for those tasks that need it. Intuitively,
this will be when the input parameters (excepting the artifact’s identifiers)
are required to perform checks at precondition time or make changes to the
instances of objects (i.e. creating, updating or deleting them).

96 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Figure 5.5 shows the conditions that determine if a task has to be split into
two actions. They are the following:

• The input parameters (different from an artifact’s identifiers) appear in
the precondition of task t.

• The input parameters (different from an artifact’s identifiers) appear in
an if/else block inside the postcondition of t.

• The input parameters are used to create7, update or delete an object (i.e.
not an artifact).

• The input parameters (different from the artifact’s identifiers) are used
to update or delete an association.

For instance, deleting an element requires an effect which performs a se-
lection on all the objects that we want to keep (i.e. those elements that are
different from the one we wish to delete). In order to carry out this task, if
the required parameters to select the object are provided by the user (and do
not correspond to the main artifact’s identifier), we will then have to split the
original operation contract into two actions.

Notice that these rules do not apply to artifacts. As we use artifacts to track
the evolution through the activity diagrams, the artifact’s identifiers are used
as input parameters of every action in the DCDS. Therefore, they are already
available at “precondition” time. The only exception is during the creation
of an artifact, but in this case the parameters are obtained by the action that
triggers the execution of the activity diagram, and used by a CA rule generated
by Algorithm 3.

A last consideration that should be made has to do with implicit precon-
ditions. In our BAUML models, we do not require any preconditions in the
creation of an instance of a class (be it an artifact or an object), because we
assume that there cannot be two elements with different object id (OID) and
the same identifier, as stated in the integrity constraints.

However, in the translation process from UML classes to database tables
we do not consider OIDs. Therefore, in order to ensure a proper translation
under any circumstances, we will have to add an implicit precondition that
ensures that there is not already an object with the given identifiers when
creating classes.

7If the created class is a subclass of an existing superclass, then there is no need to split the
task in two actions.

5.2. Translating a UML Artifact-centric BPM to a DCDS 97

Details of the Algorithm for Step 2 If the task t does not require a split,
the resulting rules are simpler. For every previous task of t, the algorithm
generates a rule of the form:

tableAD(PKi, prevTName) ∧ pre ∧ guard ∧ preart 7→ t(PKi), (5.6)

which we have seen before.
In contrast, if the task needs to be split into two actions, the algorithm

generates the following CA rules:

tableAD(PKi, prevTaskName) ∧ guard ∧ preart 7→ t1(PKi) (5.7)
tableAD(PKi, ‘t1’) ∧ pre ∧ preimp 7→ t2(PKi) (5.8)

There will be as many CA rules of the first type (5.7) as previous tasks are
there. On the other hand, the execution of the first action t1 can only lead to
t2, as shown by rule 5.8.

Notice that rule 5.7 includes (if there is one) the translation of the guard
condition that may lead to task t. It also includes the precondition required to
ensure that there is not artifact with the given identifiers (preart), if applicable.

On the other hand, the condition part of rule 5.8 includes the translation of
the precondition of t and, if there is one, an implicit precondition. The implicit
precondition is required when creating a new class, to ensure that there is not
an already existing class with the same identifier.

The precondition and implicit precondition are included in the second rule
because they may require parameters obtained by action t1. Therefore, they
would not be available when defining the first rule.

Some condition-action rules that would result from this process in our
Bicing example can be seen below. The rules below correspond to the evolution
of Pick Up Bicycle in Figure 3.7:

PickingUpBicycle(id, ‘none′) 7→ RequestBicycle(id) (5.9)
PickingUpBicycle(id, ‘RequestBicycle′) 7→ Con f irmPickUp1(id) (5.10)

PickingUpBicycle(id, ‘Con f irmPickUp1′) 7→ Con f irmPickUp2(id) (5.11)
PickingUpBicycle(id, ‘RequestBicycle′) 7→ Con f irmReturn(id) (5.12)

The actions on the right-hand side of the rules correspond to the tasks in
each of the activity diagrams. The condition on the left-hand side establishes
the conditions required for each task to take place.

98 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Including the CA rules for Pick Up Bicycle is interesting because the activity
diagram has a decision node (see Figure 3.7 on page 44) and task ConfirmPickUp
is translated into two different actions.

In this particular case, the decision node refers to a user-made decision, and
depending on this either Confirm Pick Up or Confirm Return will execute. As it
depends on the user, the condition is not translated and we allow executing
either of the corresponding actions once Request Bicycle has taken place. Notice
that Get Bicycle, a material action, does not appear in the translation because it
does not make changes to the system.

We also show below the condition-action rule that triggers the execution
of Register New Bicycle. It is interesting because this external event is in charge
of creating the artifact, and therefore the CA rule ensures that no other bicycle
exists with the given id.

RegisteringNewBicycle(id, ‘none’)∧¬Bicycle(id) 7→ CreateNewBicycle(id) (5.13)

Step 3: Generate the effects for the “initial” actions As transitions in state
machine diagrams trigger the execution of activity diagrams, we will need to
create an action in the resulting DCDS that represents this implicit connection.
That is, we need to state what each of the actions that appear in the CA rules
generated by Algorithm 2 does.

Intuitively, the actions do the following:

• Update table BAStatus to indicate that a transition is taking place, and
therefore that no other transitions can take place simultaneously over
the given artifact. The exception to this are the initial transitions (i.e. the
ones whose source state is the initial state), because we do not have the
identifiers when they begin execution and the artifact does not exist yet.

BAStatus(PKi, status, ‘none’) BAStatus(PKi, status,AD) (5.14)

PKi corresponds to the primary key of the artifact, status is a variable
representing the state of the artifact, and AD refers to the name of the
activity diagram p.

• Insert information in table tableAD to indicate that the activity diagram
can begin its execution (effect 5.15), where tableAD corresponds to the
name of the activity diagram (which in turn corresponds to an external
event or an effect in the state machine diagram) that is being executed. If

5.2. Translating a UML Artifact-centric BPM to a DCDS 99

it is an initial transition, it will obtain the identifiers of the main business
artifact (effect 5.16).

true tableAD(PKi, ‘none’) (5.15)
true tableAD(getPKi(), ‘none’) (5.16)

• Insert information in table Busy(PKi) to indicate that no other transitions
can execute while the current one is taking place.

true Busy(PKi) (5.17)
true Busy(getPKi()) (5.18)

For instance, in our example, the action corresponding to transition Pick Up
Bicycle is represented below. The first effect is used to indicate that the bicycle
is undergoing a transition. The second effect will be used to indicate that the
execution of the tasks in the activity diagram can begin. The third effect will
state that there is a transition taking place, so that no other transitions execute
in the meantime. The last effect copies the content of BAStatus that have not
been modified.

Action PickUpBicycle(id):

BicycleStatus(id, ‘Av.’, ‘none’) BicycleStatus(id, ‘Av.’, ‘PickingUp’) (5.19)
true PickingUpBicycle(id, ‘none’) (5.20)
true Busy(id) (5.21)

BicycleStatus(id′, x, y) ∧ id′ , id BicycleStatus(id′, x, y) (5.22)

5.2.4 Translating the Tasks

Each task t ∈ T in our model has a header, a precondition and a postcondition.
As we have already seen, the header of the action will only contain as input the
identifiers of the artifact, and the remaining input parameters will be obtained
by means of the effects of an action. We have also dealt with the precondition,
which is incorporated into the CA rules. In this section we will see how the
postcondition is transformed into a set of effects of an action. The steps are the
following:

1. Determine what the task does: what classes and associations are created,
deleted or modified by the task.

100 Chapter 5. Reasoning Using Data-centric Dynamic Systems

2. Translate the postcondition of the task accordingly.

3. Add the necessary effects to ensure proper evolution of the DCDS. This
will include the rules that copy all the content that is not modified to
avoid its loss.

Step 1: Identify what the tasks do The first step identifies the following
OCL expressions in the postconditions of the tasks in order to determine what
they do. We do so by following [105]. In this work, expressions are classified
according to whether they create or delete a class or an association. Updates
are considered as deletions followed by creations.

Once we have identified the expressions that create, delete and update the
artifacts and their relationships in UML, we can determine how they can be
translated into a DCDS.

Notice that in this step we will also find out whether the task requires to
be split into two different actions or if it is not necessary, as shown on Figure
5.5. If it is the case that it requires two different actions, the next step in the
translation process will have to deal with this.

For example, let’s look at the operation contract for RequestBicycle, first
presented on page 45. For easier readibility, we include it again here (simplified
with no attributes):

Listing 5.1: Code for task RequestBicycle
operat ion r e q u e s t B i c y c l e (b : B i c y c l e)
pre : −
post : b . oclIsTypeOf (InUse) and not b . oclIsTypeOf (Avai lable)

The first part of the postcondition, b.oclIsTypeOf(InUse), creates an
element of type InUse. The second part of the postcondition, not
b.oclIsTypeOf(Available), does the opposite: it deletes b as an Available
bicycle.

Step 2: Translate the task Looking at the operation contract above, one can
notice that the input parameter does not have a simple type (i.e. such as String,
int, etc.), but has instead the type of a class: artifact Bicycle, in this particular
case. We use this method of specification for every operation contract that
does not create an instance of a class. This simplifies the operation contracts’
specification and makes them more readable. Note that it is equivalent to
using the identifiers for the specification.

5.2. Translating a UML Artifact-centric BPM to a DCDS 101

As DCDSs do not deal with objects, we will eventually substitute the object
by its identifier (or primary key) when translating these tasks.

The translation of the task has two steps. The first step will obtain the effects
for the first action if the task requires a split. The second step translates into
effects the meaning itself of the task’s postcondition. Algorithm 4 shows the
main steps in this translation process, although the details for the translation
of the postconditions have been abstracted away.

Algorithm 4 translateTasks(T)
actions := ∅
DBSchema := ∅
header := t(PKi) . Creates header for action t
for all t ∈ T do

if t requires split then
DBSchema := DBSchema ∪OutT1(PKi, att j)
header1 := t1(PKi) . Creates action t1
body1 := {true OutT1(PKi, getAtt j())}
body1 := body1 ∪ {true tableAD(PKi, ‘t1’)}
action1 := 〈header1, body1〉
actions := actions ∪ action1
header := t2(PKi)

else
header := t(PKi) . Creates header for action t2

end if
body := translatePost(t.postcondition) . Returns a set of effects
action := 〈header, body〉 . Creates t or t2 with the translation of the postcondition
actions := actions ∪ action

end for
return 〈DBSchema, actions〉

Step 2.1. Create additional action (if needed) In the case that the task is
split into two actions, Algorithm 4 generates the effects for action t1:

t1(PKi):

true OutT1(PKi, getPars j()) (5.23)
true tableAD(PKi, ‘t1’) (5.24)

The first effect obtains the user input (getPars j()) and stores it in table OutT1.
Notice how we use PKi to track the evolution through the various tasks/actions.
The second effect updates tableAD to indicate that t1 has executed successfully.

Below we show the effects for action Con f irmPickUp1(id). Note that
Con f irmPickUp requires two actions when translated because it creates an
association class, BicycleRental.

102 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Con f irmPickUp1(id) :

true OutCon f irmPickUp1(id, getUserID()) (5.25)
true PickingUpBicycle(id, ‘Con f irmPickUp1’) (5.26)

The first effect obtains the parameter corresponding to the user ID and the
second effect advances the execution through the activity diagram.

Step 2.2: Translate the postconditions of the task After determining if the
tasks require to be split into two actions and identifying what they do, the
corresponding effects for the actions can be created.

Creation of a Class When a class is created in a class diagram (this in-
cludes association classes), we need to obtain values for its attributes and we
will also create the required associations with other classes. There are two
possibilities: the creation of the class is specified using a single action, or the
creation of the class is specified using two actions.

The first case will be when we deal with a change of subclass in a hierarchy
or the creation of an artifact. Unless there are other reasons for splitting the
task (such as a precondition that uses the input parameters), we will have only
one action for the task.

Creation of a subclass (not an artifact hierarchy, when the superclass al-
ready exists):

t(PKi):

q+
i ∧Q−i C(getPKc(), getAttk()) (5.27)

q+
i ∧Q−i Rel(getPKc(), getAttl()) (5.28)

Creation of an artifact or one of its subclasses:
t(PKi):

q+
i ∧Q−i C(PKi, getAttk()) (5.29)

q+
i ∧Q−i Rel(PKi, getAttl()) (5.30)

q+
i ∧ Q−i will be true, if there is no if/else block, or the translation of the

conditions in the if/else block following [106]. C corresponds to the table of
the artifact or subclass that is created. In the case of a subclass which is not
part of an artifact hierarchy, getPKc() will obtain the identifiers of the class that
is created. Otherwise, the identifiers of the class will correspond to PKi, which

5.2. Translating a UML Artifact-centric BPM to a DCDS 103

is the input parameter of the action t. getAttk() represents additional attributes
of C, and getAttl() corresponds the identifiers of the other class(es) taking part
in the relationship Rel.

The first effects (5.27,5.29) correspond to the creation of the class, the second
effects (5.28,5.30) correspond to the creation of the relationships between the
created class and other classes.

For instance, as we have seen, the operation contract in our previous ex-
ample (task RequestBicycle) creates a subclass, in this case it is part of an artifact
hierarchy. Therefore, it would be translated in the effect below:

true InUse(id) (5.31)

The second case will deal with the creation of objects (i.e. classes that are
not artifacts). In the case of artifacts, the identifiers and relevant attributes
will have been obtained previously by the action corresponding to the state
machine diagram.

t2(PKi):

OutT1(PKi,PKc, att j) ∧ q+
i ∧Q−i C(PKc, attk) (5.32)

OutT1(PKi,PKc, att j) ∧ q+
i ∧Q−i Rel(PKc, attl) (5.33)

OutT1 will be filled by the previous task, t1, which will be in charge of
obtaining the parameters, as we have seen in the previous subsection. q+

i ∧Q−i
will be true, if there is no if/else block, or the translation of the conditions in the
if/else block following [106], like previously. PKi corresponds to the primary
key of the artifact, PKc represents the primary key of the class we are creating,
C, and attk ⊆ att j will obtain the relevant attributes. Rel represents a table
holding the information that corresponds to an association between C and
another class, which is accessed by means of its role name in the OCL code.
attl represents the primary key of the class that is related to C, and attl ⊆ att j.

Below we show the remaining translation of task Con f irmPickUp into an
action. In this case we show how BicycleRental is created using the parameters
stored in table OutCon f irmPickUp.

Con f irmPickUp2(id) :

OutCon f irmPickUp1(id,uid) BicycleRental(id,uid)

Creation of an Association If the task t only creates an association, then
the parameters can be obtained directly in the action:

q+
i ∧Q−i Relrolek (getAttk(), getAttl()) (5.34)

104 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Like in the previous case, q+
i ∧Q−i will correspond to the translation of the

conditions in the if/else block, if there is any. getAttk(), getAttl() correspond to
the functions that will obtain the identifiers of the elements that take part in
the relationship.

Deletion Due to the frame problem, when we wish to delete information
in a DCDS we need to copy everything except what we wish to delete. For
this reason, the tasks that delete information have to be split into two different
actions. The first task will be in charge of obtaining the identifiers of the
elements that are deleted, as we have already seen, and the second task will
perform the actual changes. This applies to both classes and associations. The
exception to this are artifacts: the split will not be necessary to delete an artifact
as their identifiers are part of the action’s parameters.

Deletion of a Class We will first begin by looking at the deletion of an
artifact or any of its subclasses. In any case, the deletion of a superclass implies
the deletion of all of this subclasses. The translation of the OCL expressions
would be the following:

t(PKi) :

Arti f act(PK′i , ...) ∧ PK′i , PKi ∧ q+
i ∧Q−i Arti f act(PK′i , ...) (5.35)

Rel(...,PK′i , ...) ∧ PK′i , PKi ∧ q+
i ∧Q−i Rel(...,PK′i , ...) (5.36)

Arti f act is the table that represents the artifact or the artifact’s subclass,
PKi corresponds to the artifact identifier given as input, and q+

i ∧ Q−i to an
if/else condition. If there is not any, then it has a value of true. The first effect
(5.35) will delete the artifact with the given identifier. The second effect (5.36
will delete any instance of a relationship Rel in which the artifact participates.
Therefore, we will need as many instances of this effect as relationships in
which the artifact participates.

This is, of course, assuming that the task does not require to be translated
into two actions for another reason.

Returning to our example, apart from creating an instance of InUse, Request-
Bicycle also deletes an instance of Available. Consequently, we would need to
add the following effect to the action:

Available(id′) ∧ id , id′ Available(id′) (5.37)

In addition, the deletion of an instance of Available also implies the deletion
of the relationships in which it took part. In this particular case, we need to

5.2. Translating a UML Artifact-centric BPM to a DCDS 105

delete an instance of association AvailableIsIn:
AvailableIsIn(id′, apN, station) ∧ id , id′

 AvailableIsIn(id′, apN, station)
(5.38)

Then, the resulting action RequestBicycle(id) would have the following ef-
fects:

true InUse(id) (5.39)
Available(id′) ∧ id , id′ Available(id′) (5.40)

AvailableIsIn(id′, apN, apS) ∧ id , id′ AvailableIsIn(id′, apN, apS) (5.41)

On the other hand, the translation of the OCL expressions for the deletion
of an object (i.e. not an artifact) would be the following:

C(PKc, ...) ∧OutT1(PKi, attc, attk, ...) ∧ PKc , attc

∧ q+
i ∧Q−i C(PKc, ...)

(5.42)

Rel(...,PKc, ...) ∧OutT1(PKi, attc, attk, ...)∧
PKc , attc ∧ q+

i ∧Q−i Rel(...,PKc, ...)
(5.43)

PKc corresponds to the identifier(s) of C, attc contains the identifiers of the
particular instance of C which needs to be deleted and attk may contain addi-
tional parameters to perform other changes to the system. q+

i ∧Q−i corresponds
to the translation of an if/else condition, if there is any.

The first effect (5.42) corresponds to deleting the instance of the class.
The second effect (5.43) deletes the associations or relationships in which C
participates.

Deletion of an Association Below we show the form of the effect that
deal with the deletion of an association.

Rel(..., att′j, att′k, ...)∧OutT1(PKi, att j, attk) ∧ att′j , att j

∧ att′k , attk ∧ q+
i ∧Q−i Rel(..., att′j, att′k, ...)

(5.44)

att j and attk correspond to the identifiers of the association and Rel corre-
sponds to the table that represents the association. In the case of associations in
which the primary key of the artifact adds as an identifier, we would omit att j.
Like in the case of the creation, if the deletion is inside an if/else block, then
the translation of the condition of the if/else should be added to the q+

i ∧ Q−i
part of the effects.

106 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Step 3: Ensure proper evolution So far we have only translated the content
of a task t into a DCDS action. In every action we also need to make additional
changes to other tables so that the DCDS can evolve properly. We distinguish
two cases:

• If t is the last task in the activity diagram AD:

– t will delete the row in the table that corresponds to the activity
diagram AD with the primary key of the artifact that has been
manipulated.

– t will change table BAStatus:
BAStatus(pk, oldState, x) BAStatus(pk,newState, ‘none’), unless t
deletes the artifact.

– t will delete the contents of table Busy, to enable the execution of
another transition.

– It will add 〈a, b〉 to aux(x, y), to ensure that equality constraints are
checked:
true aux(a, b)

• Otherwise:

– t will change the row representing the execution of the activity
diagram AD, to indicate that the task has already been executed:
true tableAD(PKi, tName),
where tableAD corresponds to the name of the table that tracks the
evolution through the activity diagram, and tName corresponds to
the name of task t.

In our example RequestBicycle is the first task in the activity diagram. There-
fore, we will only need to add the effect to ensure the proper evolution through
the tasks in the diagram:

PickingUpBicycle(id, ‘none’) PickingUpBicycle(id, ‘RequestBicycle’)

The final action would look like this:
RequestBicycle(id) :

true InUse(id) (5.45)
Available(id′) ∧ id , id′ Available(id′) (5.46)

AvailableIsIn(id′, apN, apS) ∧ id , id′ AvailableIsIn(id′, apN, apS) (5.47)
PickingUpBicycle(id, ‘none’) PickingUpBicycle(id, ‘RequestBicycle’) (5.48)

5.2. Translating a UML Artifact-centric BPM to a DCDS 107

Logically, RequestBicycle would have to copy the contents of all the other
tabels that are not modified by the action, including table Busy.

5.2.5 Summary & Overview

In this section we have explained the translation process from the point of
view of the source models in the BAUML framework: the class, state machine,
activity diagrams and the tasks. As a summary, this subsection looks at the
elements involved in the translation process from the point of view of the target
model, the DCDSs. That is, for each element (database schema, condition-
action rules and actions) we show the elements and the algorithms involved
in the process of obtaining it.

Op. Contracts

Submit Paper

Check Author's
Existence

Register
Author

Register New
Submission

Withdraw Submission

Remove
Submission

Review Submission

Action

[true]

[false]

Visual Paradigm for UML Community Edition [not for commercial use]

Activity Diagram

Withdrawn

Rejected

Accepted

UnderReview

Withdraw Submission

Review Submission [failure]

Review Submission [success]

Submit Paper

Visual Paradigm for UML Community Edition [not for commercial use]

State Mach. Diag.

 title : String

Paper
 id : String
 name : String
 affiliation : String

Author

 name : String
 date : Date

Conference

 id : String

Session date : Date

Submission

UnderReviewSubmission ReviewedSubmission

 date : Date

WithdrawnSubmission AcceptedSub RejectedSubmission

status

result

writes
1..**

*

1

1..

0..1

0..*

is presented in

is divided into

Submission

Visual Paradigm for UML Community Edition [not for commercial use]

Class Diagram

DB Schema

Author

PK id

name
nationality

Location

PK floor
PK corridor
PK shelf

Book

PK isbn

title
publicationDate
callNo
publisher
edition
place

BookAuthor

PK,FK1 author
PK,FK2 isbn

Copy

PK barcode

FK1 isbn
FK2 shelf
FK2 corridor
FK2 floor

User

PK id

name
address
phone

Reservation

PK,FK1 barcode
PK,FK1 userId

date
Loan

PK,FK1 barcode
PK,FK1 userId

startDate
dueDate

CopyRequest

PK,FK2 barcode
PK,FK1 userId

Alg. 2

Input OutputTranslation Process

Alg. 3

Alg. 4

Figure 5.6: Overview of elements involved in obtaining the database schema
of a DCDS

To begin with, Figure 5.6 shows the elements involved in the translation
process to obtain the database schema. All the elements in the BALSA frame-
work play a role in obtaining the database schema and Algorithms 2 to 4 are
involved in this process. There are additional steps in the translation process
that are outside the scope of the algorithms mentioned.

Figure 5.7 does the same for the condition-action rules. In this case, they
are obtained from the state machine and activity diagrams, and the tasks.
Algorithms 2 and 3 are in charge of this.

Finally, Figure 5.8 focuses on the actions. They are obtained from the state
machine and activity diagrams, and the tasks. Algorithms 3 and 4 are the ones

108 Chapter 5. Reasoning Using Data-centric Dynamic Systems

Op. Contracts

Submit Paper

Check Author's
Existence

Register
Author

Register New
Submission

Withdraw Submission

Remove
Submission

Review Submission

Action

[true]

[false]

Visual Paradigm for UML Community Edition [not for commercial use]

Activity Diagram

Withdrawn

Rejected

Accepted

UnderReview

Withdraw Submission

Review Submission [failure]

Review Submission [success]

Submit Paper

Visual Paradigm for UML Community Edition [not for commercial use]

State Mach. Diag.

CA Rules

Input OutputTranslation Process

Alg. 2

Alg. 3

Figure 5.7: Overview of elements involved in obtaining the condition-action
rules of a DCDS

Op. Contracts

Submit Paper

Check Author's
Existence

Register
Author

Register New
Submission

Withdraw Submission

Remove
Submission

Review Submission

Action

[true]

[false]

Visual Paradigm for UML Community Edition [not for commercial use]

Activity Diagram

Withdrawn

Rejected

Accepted

UnderReview

Withdraw Submission

Review Submission [failure]

Review Submission [success]

Submit Paper

Visual Paradigm for UML Community Edition [not for commercial use]

State Mach. Diag.

Actions

Input OutputTranslation Process

Alg. 3

Alg. 4

Figure 5.8: Overview of elements involved in obtaining the actions of a DCDS

responsible for performing this translation, together with other steps that are
outside the scope of these algorithms.

5.3. Reasoning with the Resulting DCDS 109

5.3 Reasoning with the Resulting DCDS

Once we have obtained the DCDS, we may use it to reason about the original
artifact-centric BAUML model. The reasoning we can perform perform is
semantic: it is aimed at validating whether the BPM satisfies the business
requirements. This is achieved by allowing the designer to ask questions
about the DCDS (i.e. properties pertaining to the proper operation of the
system) and check if the results correspond to those expected.

These properties have to be defined in logic to be able to check them. Ideally,
they should be obtained automatically from the model. For this reason, after
introducing the logic that we will use to define the properties, we present some
generic properties that should be interesting to check in any model and could
be generated automatically.

5.3.1 Verification Logic

First of all, we have to determine whether the services in the DCDS are deter-
ministic or non-deterministic, as the type of logic that we will use to define
the properties depends on this. Considering that all business process models
require user intervention at some point, the services in the DCDS are non-
deterministic. For this reason, we will have to define the properties that we
wish to check using µLp, a fragment of µ-calculus.

µ-calculus distinguishes between properties that refer to the current state
or its immediate successors, and properties that refer to arbitrarily far away
states. µLp restricts µ-calculus by assuming that quantification is limited to
elements that are present in the current database, and these elements must
continuously persist in the system in order for the quantification to take effect
[11].

We summarize here the main aspects of µLp [11], contextualizing it to the
case of BAUML models. Given a BAUML model B, the logic µLp is defined
as:

Φ ::= Q | ¬Φ | Φ1 ∧Φ2 | ∃x.live(x) ∧Φ |

live(~x) ∧ 〈−〉Φ | live(~x) ∧ [−]Φ | Z | µZ.Φ

where Q is a possibly open FO query, Z is a second order predicate variable,
and the following assumption holds: in live(~x) ∧ 〈−〉Φ and live(~x) ∧ [−]Φ, the
variables ~x are exactly the free variables of Φ, once we substitute to each
bounded predicate variable Z in Φ its bounding formula µZ.Φ′ [11]. This

110 Chapter 5. Reasoning Using Data-centric Dynamic Systems

requirement expresses that µLp quantifies only over those objects/artifacts
that persist in the system, i.e., continue to stay in the active domain of the
system.

We use the following abbreviations:

• Φ1 ∨Φ2 = ¬(¬Φ1 ∧ ¬Φ2),

• [−]Φ = ¬〈−〉¬Φ,

• νZ.Φ = ¬µZ.¬Φ[Z/¬Z],

• ∀x.A(x)→ Φ = ¬(∃x.A(x) ∧ ¬Φ),

• live(~x)→ 〈−〉Φ = ¬(live(~x) ∧ [−]¬Φ),

• live(~x)→ [−]Φ = ¬(live(~x) ∧ 〈−〉¬Φ).

The last two abbreviations show that µLp allows one to “control” what hap-
pens when quantification ranges over a value that disappears from the current
active domain: in the → case the property trivializes to true, in the ∧ case it
trivializes to false.

Formally, and knowing that the DCDS has nondeterministic services, the
satisfaction of a certain property by a DCDS can be defined as follows. Given a
DCDSS = 〈D,P〉, with a data layerD = 〈C,R,E,I0〉 (notice that it includes an
initial database instance I0) and a process layer P = 〈F ,A, %〉, and a property
Φ expressed in µLP, we say that S verifies Φ if Υs |= Φ, where Υs corresponds
to the transition system of the DCDS S. A transition system represents all the
possible executions of the process layer P over the data layerD in S.

Although each model will have its own particular set of properties that need
to be checked, there are also some generic properties that are applicable to any
model. These properties could eventually be automatically generated. We
will focus on checking the proper evolution of an artifact and the executability
of services.

5.3.2 Evolution of an Artifact

Checking the correct evolution of an artifact is key, as this ensures that the
artifact will be able to represent reality correctly. We can say that an artifact
evolves properly when, after it is created, it can be deleted from the system
(if the model allows it) or it reaches one of the last states in the state machine
diagram (i.e. it reaches a state from which it cannot evolve anymore). In
generic form, this property would be defined in the following way:

5.3. Reasoning with the Resulting DCDS 111

Unusable

Available InUseReturn Bicycle

Repair Bycicle [fail]

Repair Bicycle [success]

Pick Up Bicycle [fail]

Pick Up Bicycle [success]

Register New Bicycle

Figure 5.9: State diagram of Bicycle from our example on page 41.

νX.(∀idi.(BAStatus(idi, ‘ f irst′, ‘none′) ∧ BA(idi)→
µY.(BAStatus(idi, ‘last′, ‘none′) ∨ (BA(idi) ∧ 〈−〉Y))) ∧ [−]X

(5.49)

νX.(∀idi.(BAStatus(idi, ‘ f irst′, ‘none′) ∧ BA(idi)→
µY.(BAStatus(idi, ‘last′, ‘none′) ∨ (BA(idi)→ 〈−〉Y))) ∧ [−]X

(5.50)

The first property corresponds to the case in which artifacts are not de-
stroyed, whereas the second considers the possibility that an artifact may be
deleted from the system. Notice that any system that fulfills the first property
will also fulfill the second; however it is best to use the most precise rule in
each case.

Although this is an interesting property, in our example is not applicable,
as the state machine diagram is not acyclic (see Figure 5.9) and there is no last
state as defined above.

However, there is a similar property in our example that we could check:
an Unusable bicycle should eventually be repaired successfully or destroyed.
Below we show the definition of this property:

νX.(∀id.BicycleStatus(id, ‘Unusable’, ‘none’) ∧ Bicycle(id)→
µY.(BicycleStatus(id, ‘Available’, ‘none’) ∨ (Bicycle(id)→ 〈−〉Y))) ∧ [−]X

(5.51)

The result of model checking in this case would be a positive answer
showing that this requirement is already satisfied by the UML artifact-centric

112 Chapter 5. Reasoning Using Data-centric Dynamic Systems

BPM specification of our example. Notice that the property refers to table
BicycleStatus and not to the tables representing the artifacts themselves. This
is necessary to guarantee that the whole activity diagram has been executed
correctly; that is, to ensure that the property is evaluated when no transition
is taking place.

However, checking that an artifact evolves correctly does not always guar-
antee that all the artifact’s states are reachable. For instance, in the previous
example, the property only ensures that an artifact that reaches state Unusable
will eventually reach state Available or be destroyed, but it does not ensure that
the artifact can become InUse. For this reason, it is also interesting to check the
reachability of a particular state given a certain state. The generic form of this
property is the following:

µX.(∃idi.BAStatus(idi, ‘source′, ‘none’) ∧ BA(idi)∧
µY.(BAStatus(idi, ‘target′, ‘none’) ∨ (BA(idi) ∧ 〈−〉Y))) ∨ 〈−〉X

(5.52)

The property above states that at least there is an artifact in state SourceState
that eventually changes into state TargetState.

For instance, in our example, we may want to check if it possible to reach
state InUse from Available. The property would be defined in the following
way:

µX.(∃id, c, t.BicycleStatus(id, ‘Available’, ‘none’) ∧ Bicycle(id)
∧µY.(BicycleStatus(id, ‘InUse’, ‘none’)∨

(Bicycle(id) ∧ 〈−〉Y))) ∨ [−]X
(5.53)

In this case, the model check would return also a positive answer, as state
InUse can be reached by executing activity diagrams RegisterNewBicycle and
RequestBicycle.

5.4 Summary & Conclusions

In this chapter we have presented a way to translate a BAUML model into
a data-centric dynamic system (DCDS) [11], with the goal of checking its
correctness. As DCDS are grounded on logic, they provide the ability to
perform model checking on them for this purpose. DCDSs are able to represent
both the static and the dynamic aspects of the initial UML models. Finally,
we have outlined the definition of several generic properties that it would be
desirable to check in any artifact-centric business process model.

5.4. Summary & Conclusions 113

This work helps to bring together a high-level specification, useful for busi-
ness people, but which is not possible to check, and low-level specifications,
impractical in the business world but whose correctness can be verified.

Chapter 6

Reasoning in Practice:
AuRUS-BAUML

In the previous chapter we have seen a way to reason with our BAUML models
by translating them into a DCDS and applying model checking techniques to
perform the correctness tests.

Unfortunately, to the best of our knowledge, there is no tool that can
perform the reasoning using DCDSs, although some work has been done on
implementing the DCDSs [30]. For this reason, this chapter presents a tool
which is able to perform several semantic tests to check the correctness of the
BAUML model.

The modeler begins by defining the BAUML model graphically using an
open-source tool, ArgoUML [7] and then exporting it as an XMI file. This
XMI file is provided to AuRUS-BAUML, a tool that we have implemented
and which is able to translate a BAUML model into logic and automatically
perform several semantic tests. Internally, this tool uses another tool SVTe,
which given a certain property over the logic schema (i.e. the result of the
translation) can tell whether this property can be fulfilled. Following this
workflow, the user can answer several questions which deal with the semantic
correctness of the initial model.

It is important to point out that our reasoning approach works only with the
specification of the model and does not need an initial instance of the model to
obtain results. DCDSs, on the other hand, do require an initial instance of the
database schema. Secondly, there are two possible outputs of the reasoning
process. On the one hand, if the property can indeed be fulfilled by the initial

115

116 Chapter 6. Reasoning in Practice: AuRUS-BAUML

model, the result will be a sample instantiation. On the other hand, if it is not
possible to fulfill the given property, the result will be the list of constraints
that are preventing it. Logically, we consider all the elements in the BAUML
framework when reasoning.

This chapter begins by introducing several properties of interest to ensure
the semantic correctness of the BAUML model. Afterwards, we present the
tool and its internal workings in more detail. We then specify the translation
process which is performed by AuRUS-BAUML and formalize the properties
introduced earlier. The chapter finishes by pointing out some conclusions and
further work.

6.1 Checking the Semantic Correctness of BAUML Models

As we mentioned in the Introduction to this thesis, semantic correctness en-
sures that the model represents the domain correctly. More specifically, we
distinguish between two types of semantic correctness: verification and valida-
tion. Verification looks for inherent errors in the model, answering the question
“Is the model right?”, whereas validation ensures that the model represents the
domain appropriately, answering the question “Is it the right model?”.

In terms of automation, the main difference between verification and val-
idation is that verification can be performed without user intervention, as it
looks for errors and contradictions within the model. In contrast, validation
requires a user to ensure that reality is represented correctly in the model. As
we shall see, there are some validation properties that can be generated and
checked automatically, but it is the user’s decision to determine whether the
fulfillment of these properties is actually right or not.

The verification and validation properties that we present in this section
are based on or inspired by the following works: [105, 114, 129, 106]. This
section is not meant to be an exhaustive list of all the necessary tests to ensure
semantic correctness, but rather an illustrative overview of the kind of tests
that can be performed.

6.1.1 Verification

There are several verification properties that can be checked in a BAUML
model. We have divided these properties according to the dimension of the
BAUML model they focus on, although all the dimensions are taken into
consideration in the reasoning process.

6.1. Checking the Semantic Correctness of BAUML Models 117

The Class Diagram in a BAUML Model

We present three different properties that can be checked over the class di-
agram in a BAUML model: liveliness of the classes and associations, the
correctness of the cardinalities in the relationships, and the redundancy of
integrity constraints.

Liveliness of the classes and associations Checking that each class and
association in the diagram is lively ensures that there can exist at least one
instance of each of the classes and associations. Having a class or an association
which cannot be instantiated implies that there is some mistake in the class
diagram, as it does not make sense to have an element for which no instances
can exist.

For instance, in the Bicing example presented in Chapter 3 on page 37, we
could check if Bicycle or BicycleRental are lively.

Correctness of minimum and maximum cardinalities Cardinalities in the
class diagram may contain errors. In the case of minimum cardinalities, it may
be the case that the bound is actually higher than the one stated. The opposite
may also hold for maximum cardinalities: the bound may be actually lower
than the one that appears in the diagram.

For instance, in the class diagram corresponding to the Bicing example
with two artifacts (see page 52), we could check if the maximum cardinality in
the relationship between artifacts Active user and InUse bicycle is really three
or is actually lower.

Redundancy of integrity constraints Although this is not strictly a semantic
correctness property by itself, ensuring that the model avoids redundancy and
is minimal are also correctness criteria. An integrity constraint is redundant
with another when the fulfillment of the first constraint always implies the
fulfillment of the second.

For example, we could check if any of the integrity constraints ensuring
the correctness of the dates is redundant (on both versions of Bicing).

The State Machine Diagram in a BAUML model

There are three main properties of interest regarding state machine diagrams:
state reachability, event applicability and event executability.

118 Chapter 6. Reasoning in Practice: AuRUS-BAUML

State reachability State reachability ensures that every state in which an
artifact may be can eventually be reached. As each of the states in the state
machine diagram has its corresponding subclass in the class diagram, it is
equivalent to checking the liveliness of each of the subclasses of the artifact.

For instance, we could check if states Available, Unusable and InUse are
reachable in the state machine diagram of Bicing on page 41.

Transition applicability Transition applicability ensures that the required
conditions are met for an external event or an effect to execute. Note that this
property does not ensure that the transition executes successfully, but rather
that the conditions can be met for it to begin its execution.

We will consider both external events and effects in the transition as black
boxes; therefore, the conditions for applicability will only take into considera-
tion the following elements:

• The source state of the transition

• The OCL condition in the transition

Logically, if the source state is the initial state, then there is no restriction
in terms of the source state.

In our Bicing example, we could check if transitions Register New Bicycle or
Return Bicycle meet the conditions for their execution (see the activity diagrams
on pages 43 and 44).

Transition executability Transition executability will ensure that every tran-
sition in the state machine diagram can execute successfully. This will happen
when the transition itself is applicable and after its execution it leaves the
system in a state that fulfills all the integrity constraints.

Like in the previous case, we could check the executability for transitions
Register New Bicycle or Return Bicycle in our example.

Activity Diagrams and Operation Contracts in a BAUML Model

We consider activity diagrams and the operation contracts representing the
tasks together in this section as they are closely interrelated. The activity
diagrams merely establish the order for the execution of the tasks, and it is the
tasks themselves the ones that contain the semantic information.

Similarly to the case of the state machine diagram, in this instance we can
also consider the applicability and the executability of the tasks.

6.1. Checking the Semantic Correctness of BAUML Models 119

Applicability of the tasks We consider that a task is applicable if the previous
task has executed successfully and its precondition is met. If there is an OCL
condition in one of the edges leading to the task, it will also have to be taken
into consideration to study its applicability.

We could check the applicability of tasks Confirm Pick-Up and Confirm
Return in the activity diagram in Figure 3.7 on page 44.

Executability of the tasks A task will be executable if it is applicable and
its postcondition can be met. Please note that, since the integrity constraints
are not checked until the end of the activity diagram execution, in most cases
the tasks will be executable even if eventually (i.e. at the end of the activity
diagram execution) they lead to an integrity constraint violation.

Like in the previous case, we could also check the executability of tasks
Confirm Pick-Up and Confirm Return.

Some Thoughts on Verification Tests

Although we have classified the different tests according to the dimension that
they check, in practice these tests are not completely independent from each
other. This subsection gives an overview of how they are related (see Table 6.1)
and how the results can be interpreted.

Test 1 Relationship Test 2

State reachability is equivalent to Class liveliness
Transition executability implies Transition applicability
Operation executability implies Operation applicability
Transition executability implies Event/Action executability

Table 6.1: Overview of the relationships between tests.

To begin with, the state reachability test is equivalent to the class liveli-
ness test. As we have explained in Chapter 3, each of the states in the state
machine diagram corresponds to a subclass of the artifact in the class diagram.
Therefore, checking if state s is reachable is actually the same as checking if
there exists an instance of class cs, where cs is the subclass that corresponds
to s.

On the other hand, the executability tests have an implies relationship
with the applicability tests over the same element. That is, if a transition or an

120 Chapter 6. Reasoning in Practice: AuRUS-BAUML

operation is executable, then this implies that the transition or the operation
(respectively) is applicable. By the logic equivalence rules, if the transition or
operation is not applicable, then it is not executable either.

Moreover, notice that if a transition is executable, then the external event
or effect in the transition is also executable. If two different transitions t1 and
t2 have the same event, it may be the case that one of them, let’s say t1, is
applicable (executable) and the other, t2, is not. This may be due to different
conditions in the transition that in the case of t1 allow the execution of the
event or effect and in the case of t2 they do not.

6.1.2 Validation

Validation tests deal with the adequacy of the model in terms of representing
the reality appropriately. Therefore, they can be used to check if the business
process meets the requirements. However, due to this, it is more difficult to
define tests that are valid for any BAUML model. What we do in this section is
present some tests to detect potential errors, but it is ultimately the modeler’s
or user’s responsibility to interpret the results.

User-defined Tests Allowing the user to define his or her own tests can
be useful to ensure that the model fulfills the requirements elicited in the
early stages of the process definition. This includes the ability to ensure that
business rules, which are closely related to business goals [72, 71], have been
incorporated correctly in the specification of the business process.

For instance, we could have the following requirements in our example:

• Blacklisted users cannot rent any bicycles.

• There cannot be two anchor points with the same number, even if they
belong to different stations.

User-defined tests would then allow us to check that these properties are
fulfilled.

Path Inclusion or Exclusion When there are two different associations which
link exactly the same classes, in some cases one relationship should be subset of
the other. In other cases the two paths should be mutually exclusive. Therefore,
checking these properties can provide information to the user about a potential
error.

6.1. Checking the Semantic Correctness of BAUML Models 121

A very intuitive example to illustrate these tests is based on a company with
employees and departments. See Figure 6.1. Employees work in departments,
every department has a manager and departments may be audited by one or
several employees to ensure they work properly.

 id
 name
 address
 dateOfBirth

Employee

 id
 name
 address

Department

1 0..1

1..* 1

**

auditor auditedDpt

audits

dptEmp

manager

workDpt

managedDpt

manages

works in

Figure 6.1: Class diagram showing an Employee and Department with several
associations between these two classes.

Logically, the manager of a department should be one of its employees.
On the other hand, an employee auditing a department should not work in it,
to preserve the independence of the audit. The first example is a case of path
inclusion, whereas the second corresponds to a case of path exclusion.

Missing irreflexive constraints For those associations which relate the same
class to itself, in many instances there may be an irreflexive constraint missing:
that is, one instance of a class cannot be related to itself.

A typical example in which an irreflexive constraint is necessary is that
of marriages. See the small class diagram in Figure 6.2. A person may be
married (or not) to another person, but a person cannot be married to himself
or herself.

 id
 name

Person

spouse

0..1

0..1

is married to

Figure 6.2: Class diagram showing the representation of marriages.

122 Chapter 6. Reasoning in Practice: AuRUS-BAUML

Full transition coverage The full transition coverage property tests that all
possible combinations of transitions, as stated in the state machine diagram,
can really take place.

State CState BState Atrans1 trans6
trans4

trans5

trans2

trans3

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.3: State machine diagram with multiple transitions between the same
source and target states.

For example, Figure 6.3 shows a simple state machine diagram with 3 states
and 6 transitions. Although there is only one way to reach State A, there are
two different ways to reach state B and two ways to reach State C from State B.
Therefore we have all these possible combinations for transition execution:

• trans1,trans2,trans4,trans6

• trans1,trans2,trans5,trans6

• trans1,trans3,trans4,trans6

• trans1,trans3,trans5,trans6

If one of these combinations does not execute successfully, then there is the
possibility that something is wrong in the definition of the transitions or the
external events/actions that make them up.

6.2 AuRUS-BAUML: The Tool & Its Workflow

After presenting several relevant tests, this section introduces AuRUS-
BAUML. As we have already mentioned, AuRUS-BAUML allows us to check
if a BAUML model fulfills some of the different properties we presented in the
previous section. The following tools are used in the workflow:

• ArgoUML, to draw the UML diagrams and write the OCL operation
contracts corresponding to the BAUML model. Its output is an XMI file
containing the details of the model (Figure 6.4).

• AuRUS-BAUML, which checks the semantic correctness of the model.
It receives as input an XMI file representing the BAUML model and the

6.2. AuRUS-BAUML: The Tool & ItsWorkflow 123

<?xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2' xmlns:UML =
 'org.omg.xmi.namespace.UML' timestamp = 'F
ri Jul 03 10:41:59 CEST 2015'>
 <XMI.header> <XMI.documentation>
 <XMI.exporter>ArgoUML (using Netbeans
 XMI Writer version 1.0)</XMI.exporter>
 <XMI.exporterVersion>0.34(6) revised o
n $Date: 2010-01-11 22:20:14 +0100 (Mon, 1
1 Jan 2010) $ </XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name="UML" xm
i.version="1.4"/></XMI.header>
 <XMI.content>
 <UML:Model xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:000000000
0000865'
 name = 'untitledModel' isSpecification =
 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:00000000000
00866'
 = 'false'
 isLeaf = 'false' isAbstract = 'false' s

Users ArgoUML XMI file

define
BAUML models generates

Figure 6.4: Process to generate the required XMI file using ArgoUML

<?xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2' xmlns:UML =
 'org.omg.xmi.namespace.UML' timestamp = 'F
ri Jul 03 10:41:59 CEST 2015'>
 <XMI.header> <XMI.documentation>
 <XMI.exporter>ArgoUML (using Netbeans
 XMI Writer version 1.0)</XMI.exporter>
 <XMI.exporterVersion>0.34(6) revised o
n $Date: 2010-01-11 22:20:14 +0100 (Mon, 1
1 Jan 2010) $ </XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name="UML" xm
i.version="1.4"/></XMI.header>
 <XMI.content>
 <UML:Model xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:000000000
0000865'
 name = 'untitledModel' isSpecification =
 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:00000000000
00866'
 = 'false'
 isLeaf = 'false' isAbstract = 'false' s

feed XMI file

Users AuRUS
BAUML Result

select tests

Figure 6.5: Process for using our tool.

properties that user wishes to check. Both the XMI file and the property
are translated into logic. The resulting translation is then provided to
another tool, SVTe, which performs the reasoning, and the result is then
presented to the user. Note that the integration with SVTe is transparent
from the users’ point of view, as shown in Figure 6.5.

– SVTe performs the reasoning with the translated model. It receives
as input a text file with a logic representation, together with the
property that needs to be checked. As a result it informs AuRUS-
BAUML of the success or failure or the test. In case of success, it
provides a sample instantiation, otherwise it provides the restric-
tions which do not allow the achievement.

The remainder of this section presents and describes the tools involved in
the process in more detail.

124 Chapter 6. Reasoning in Practice: AuRUS-BAUML

6.2.1 ArgoUML

As we have mentioned, we use ArgoUML to graphically represent BAUML
models. ArgoUML [7] is a Java-based, open-source tool whose goal is to allow
its users to draw UML diagrams. Although ArgoUML is free, lightweight and
multi-platform, it also has some drawbacks.

The greatest issue when using ArgoUML to represent our BAUML models
is the huge difference in semantics between UML 1.4 (implemented by Ar-
goUML) and UML 2.X for the UML activity diagrams. In UML 1.4 activity
diagrams were a specialization of state machine diagrams, whereas in UML
2.0 they were reformalized and given token semantics, like Petri-nets.

In spite of this, we have opted to use it because we built AuRUS-BAUML on
top of another tool, AuRUS-Operations, which was able to parse Argo’s XMI
file and load the class diagrams and the operation contracts into a metamodel.
In any case, the notational differences are small and it works for our purposes.
Figure 6.6 shows a screenshot of ArgoUML and an activity diagram drawn in
it.

Figure 6.6: Screenshot of an activity diagram modeled using ArgoUML.

Another characteristic that needs to be considered is that the only graphical
restrictions that can appear in the class diagram are the cardinality constraints
and the disjointness and covering constraints in hierarchies. The rest of graph-

6.2. AuRUS-BAUML: The Tool & ItsWorkflow 125

ical constraints need to be expressed as OCL restrictions.
Finally, OCL conditions in both the state machine and activity diagrams

should have the following form, so that they can be processed properly:

context <ArtifactName> inv <ConditionName>: <OCL_Expression>

Once all the dimensions in the process have been represented in ArgoUML,
then the diagrams can be exported into an XMI file that can be used by AuRUS-
BAUML.

6.2.2 AuRUS-BAUML

We use AuRUS-BAUML to obtain the logic translation of the BAUML model
contained in the XMI file. AuRUS-BAUML evolves from an already exist-
ing tool, AuRUS [114], that is capable of verifying and validating UML/OCL
conceptual schemas specified using ArgoUML [7]. Initially it only dealt with
structural schemas (without considering the dynamic part of a system), but the
tool was expanded to incorporate operations in a master thesis [99], following
the work in [105]. We will call this version of the tool that includes operations
AuRUS-Operations.

Taking advantage of this, we decided to extend and adapt AuRUS-
Operations to validate and verify our BAUML models. Figure 6.7 illustrates
the internal workings of AuRUS-BAUML.

Given the XMI schema, AuRUS-BAUML loads it into two Java libraries
which make up the metamodel. The first library, EinaGMC [128], is publicly
available and covers both the UML Class Diagram and the OCL operation
contracts. The second library, MetaSMADU (Meta State Machines and Activity
Diagrams in UML), was created specifically for this thesis and has a simple
but appropriate representation for the state machine and activity diagrams.

Once the models have been parsed and loaded, AuRUS-BAUML trans-
lates them into logic. To do so, we have made several important changes to
AuRUS-Operations in order to deal with the particularities of BAUML mod-
els. In general terms, we have had to adapt the translation to incorporate the
execution order of operations given by activity and state machine diagrams.
Moreover, we no longer assume that all classes and associations have to be
created by the operations in the model. The details of this process can be found
on Section 6.3.

At the end of the process, AuRUS-BAUML shows in its graphical interface
the available tests and allows the user to select those that he is interested in

126 Chapter 6. Reasoning in Practice: AuRUS-BAUML

<?xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2' xmlns:UML =
 'org.omg.xmi.namespace.UML' timestamp = 'F
ri Jul 03 10:41:59 CEST 2015'>
 <XMI.header> <XMI.documentation>
 <XMI.exporter>ArgoUML (using Netbeans
 XMI Writer version 1.0)</XMI.exporter>
 <XMI.exporterVersion>0.34(6) revised o
n $Date: 2010-01-11 22:20:14 +0100 (Mon, 1
1 Jan 2010) $ </XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name="UML" xm
i.version="1.4"/></XMI.header>
 <XMI.content>
 <UML:Model xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:000000000
0000865'
 name = 'untitledModel' isSpecification =
 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:00000000000
00866'
 = 'false'
 isLeaf = 'false' isAbstract = 'false' s

XMI file XMI Parser

Displayed
Result

Metamodels

Logic
Translator

<xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2' xmlns:UML =
 'org.omg.xmi.namespace.UML' timestamp = 'F
ri Jul 03 10:41:59 CEST 2015'>
 <XMI.header> <XMI.documentation>
 <XMI.exporter>ArgoUML (using Netbeans
 XMI Writer version 1.0)</XMI.exporter>
 <XMI.exporterVersion>0.34(6) revised o
n $Date: 2010-01-11 22:20:14 +0100 (Mon, 1
1 Jan 2010) $ </XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name="UML" xm
i.version="1.4"/></XMI.header>
 <XMI.content>
 <UML:Model xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:000000000
0000865'
 name = 'untitledModel' isSpecification =
 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '-64--88--59-
xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2' xmlns:UML =
 'org.omg.xmi.namespace.UML' timestamp = 'F
ri Jul 01-
Nla(x,y,x) :- dfasdf(p,q,t),dfa(dfa,)d s

Logic
Schema

SVTe

<?xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2' xmlns:UML =
 'org.omg.xmi.namespace.UML' timestamp = 'F
ri Jul 03 10:41:59 CEST 2015'>
 <XMI.header> <XMI.documentation>
 <XMI.exporter>ArgoUML (using Netbeans
 XMI Writer version 1.0)</XMI.exporter>
 <XMI.exporterVersion>0.34(6) revised o
n $Date: 2010-01-11 22:20:14 +0100 (Mon, 1
1 Jan 2010) $ </XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name="UML" xm
i.version="1.4"/></XMI.header>
 <XMI.content>
 <UML:Model xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:000000000
0000865'
 name = 'untitledModel' isSpecification =
 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:00000000000
00866'
 = 'false'
 isLeaf = 'false' isAbstract = 'false' s

Result

Meta

Translator

Available
Tests

Selected
Tests

Figure 6.7: Internal workings of AuRUS-BAUML.

6.2. AuRUS-BAUML: The Tool & ItsWorkflow 127

performing. These tests are generated automatically from the user’s selection.
For each of the selected tests type, the tool will inform the user of whether the
tests have been performed successfully or not.

However, as it is still a prototype tool and a work-in-progress, only some
of the verification and validation tests have been implemented and the tool
requires more thorough testing. We expect to do this in future work.

SVTe

AuRUS-BAUML relies on an existing tool, SVTe, that is able to perform the
tests described at the beginning of this chapter. SVTe deals with each test
as a satisfiability problem. It uses the CQCE method [115] which is aimed at
building a consistent state of a database schema that satisfies a given goal,
represented as a set of one or more literals. The method starts with an empty
solution, and given the goal, the database schema, the constraints and the
derivation rules, tries to obtain a set of base facts that satisfy the goal without
violating any of the constraints. Notice that it does not require an initial
instantiation of the database schema.

The CQCE method is a semidecision procedure for finite satisfiability. This
means that it does not terminate in the presence of solutions with infinite
elements. However, termination is ensured if the model satisfies the conditions
identified in the next chapter, Decidability.

To instantiate the variables during the inference process, the method uses
Variable Instantiation Patterns (VIPs), which generate only the relevant facts
that need to be added to the schema to satisfy the goal. If no instance that satis-
fies the database schema and the constraints is found, then the VIPs guarantee
that the goal cannot be achieved with the given schema and constraints.

The CQCE method executes in two stages. In the first stage, the method
obtains an intial instance that satisfies the given goal. During the second stage,
the method checks if the instance violates any of the given constraints, and if
this is the case, tries to repair them by adding new facts. If it is not possible
to perform any repair, it backtracks and tries a different initial database. This
process goes on until it finds a solution or it determines that no solution exists.

SVTe provides the following results. If there exists a solution, it shows a
sample instantiation to prove its existence. On the other hand, if no solution
exists, the tool provides a list of the constraints that prevent it. As SVTe is
transparently integrated in AuRUS-BAUML, these results are shown to the
user through AuRUS-BAUML’s interface.

128 Chapter 6. Reasoning in Practice: AuRUS-BAUML

6.3 Translation of BAUML into Logic

As we have seen, AuRUS-BAUML has a component, BAUML Translator,
which translates the BAUML model contained in an XMI file provided by
ArgoUML into a logic suitable for SVTe, which is in charge of the reasoning.
AuRUS-BAUML then transparently shows the result of SVTe to the user.

This section focuses on describing the translation process which is carried
out by BAUML Translator. It begins by presenting the background on logic
formalization and then describes the translation process itself.

6.3.1 Background on Logic Formalization

For the formalization of our models, we use formulas in first-order logic. A
term T is a variable or a constant. If p is a n-ary predicate and T1, ...,Tn are
terms, then p(T1, ...,Tn) or p(T) is an atom. An ordinary literal is either an atom
or a negated atom. A built-in literal has the form of A1θA2, where A1 and A2
are terms. θ is either <, ≤, >, ≥, = or ,.

A normal clause has the form: A← L1 ∧ ... ∧ Lm with m ≥ 0, where A is an
atom and each Li is an ordinary or built-in literal. All the variables in A, and in
each Li, are assumed to be universally quantified over the whole formula. A
is the head and L1 ∧ ...∧ Lm is the body of the clause. A normal clause is either
a fact, p(a), where p(a) is a ground atom, or a deductive rule, p(T)← L1 ∧ ...∧ Lm
with m ≥ 1, where p is the derived predicate defined by rule.

A condition is a formula of the (denial) form: ← L1 ∧ ... ∧ Lm with m ≥ 1.
Finally, a schema S is a tuple (DR, IC) where DR is a finite set of deductive
rules and IC is a finite set of conditions. All formulas are required to be safe, i.e.
every variable occurring in their head or in negative or built-in literals must
also occur in an ordinary positive literal of the same body. An instance of a
schema S is a tuple (E,S) where E is a set of facts about base predicates. DR(E)
denotes the whole set of ground facts about base and derived predicates that
are inferred from an instance (E,S), and corresponds to the fixpoint model of
DR ∪ E.

6.3.2 Overview of the Translation Process

The translation process will map the classes and associations to predicates.
Those that are read-only, will be base predicates, whereas those that are read-
write will be derived from the execution of the tasks that create and/or delete
them. These derivation rules will also have to take into consideration the

6.3. Translation of BAUML into Logic 129

context in which the tasks execute, determined by the state machine diagram
and the activity diagrams. Finally, the integrity constraints in the class diagram
will be translated as logic formulas in the denial form, considering that they
only need to be checked at the end of a transition.

The work we present here clearly differs from [105], where only class
diagrams and operation contracts were considered. Note that in this case no
restrictions were imposed on the execution of the tasks nor on the checking of
the constraints.

To illustrate the translation process, we will use the Bicing example pre-
sented in Section 3.1, like in the previous section. The assumptions we make
over the initial models, detailed in Section 5.1.3, also apply in this chapter.

Without loss of generality, and to keep the examples simpler, we will work
with the class diagram in Figure 3.2 on page 37, but with no attributes. The
integrity constraints that deal with attributes will also, logically, be omitted
from the reasoning process. This will make the reasoning process easier for
the tool, as there will be less restrictions to take into consideration.

6.3.3 Translation Algorithms

Our translation process is divided into four steps, shown in Algorithm 5.
To begin with, we focus on the generic steps: obtaining derivation rules for
classes and associations, translating the integrity constraints, generating the
derivation rules from the tasks, and adding the required conditions to ensure
that tasks execute properly, in the context given by state transition and activity
diagrams.

The first step creates the derivation rules for the read-write set of classes and
associations. To determine if a class or association is read-only or read-write,
it is only necessary to examine the postcondition of all the tasks as described
in [105], like in the previous chapter. The predicate corresponding to each
read-write class and association will have a time component t indicating that
the element exists at time t, whereas read-only elements will not include the
time t and will be treated as base predicates.

The algorithm also takes into consideration if a class is created or created and
deleted in the model. The general form of these rules is:

C(oid, p, t)← addC(p, t1) ∧ ¬deletedC(p j, t1, t) ∧ t ≥ t1 ∧ time(t),

where p corresponds to the attributes in the class (including its OID [unique
object identifier]) or the participants in the association, p j represents the iden-
tifier of the class (its OID) or association (OID of the classes that participate

130 Chapter 6. Reasoning in Practice: AuRUS-BAUML

Algorithm 5 TranslateToLogic(B = 〈M,O,S,P,T〉)
. Step 1: Creating rules for read/write classes and associations

r := ∅
for all c ∈ classes(M) do

if c is created in P ∧ c is not deleted in P then
r := r ∪ {C(p, t)← addC(p, t1) ∧ time(t) ∧ t ≥ t1}

else if c is created in P ∧ c is deleted in P then
r := r ∪ {C(p, t)← addC(p, t1) ∧ ¬deletedC(p j, t1, t) ∧ t ≥ t1 ∧ time(t)}
r := r ∪ {deletedC(p j, t1, t2)← delC(p j, t) ∧ time(t1) ∧ time(t2) ∧ t ≤ t2 ∧ t > t1}

end if
end for
for all a ∈ associations(M) do

if a is created in P ∧ a is not deleted in P then
r := r ∪ {A(p, t)← addA(p, t1) ∧ time(t) ∧ t ≥ t1}

else if a is created in P ∧ a is deleted in P then
r := r ∪ {A(p, t)← addA(p, t1) ∧ ¬deletedA(p j, t1, t) ∧ t ≥ t1 ∧ time(t)}
r := r ∪ {deletedA(p j, t1, t2)← delA(p j, t) ∧ time(t1) ∧ time(t2) ∧ t ≤ t2 ∧ t > t1}

end if
end for

. Step 2: Translate integrity constraints
icSet := translateIC(O)
for all condition cond ∈ icSet do

cond := cond + {∧validState(t)}
end for
taskRules := ∅

. Step 3: Generate rules for class and association creation and deletion for every task
for all t ∈ T do

resRules := translateTask(t)
taskRules := taskRules ∪ resRules

end for
. Step 4: Generate necessary rules and conditions to ensure correct execution order

taskRules := taskRules ∪ generateConstraintsTaskExecution(B)
return 〈r, icSet, taskRules〉

and identify it) C, and thus p j ⊆ p, and t and t1 represent the time. We will see
how addC(...) and deletedC(...) are obtained later on.

The rule basically states that a class or an association will exist at time t if
it has been created previously, at t1 (t1 ≤ t), and it has not been deleted in the
meantime. For instance, Bicycle is encoded as:

Bicycle(b, t)← addBicycle(b, t1) ∧ time(t) ∧ ¬deletedBicycle(b, t1, t) ∧ t1 ≤ t,

whereas User is encoded as User(u). Bicycle is a derived predicate created
and deleted by some of the tasks. On the other hand, User is a base predicate
as it is not created nor deleted by any task.

Step 2 of the algorithm translates the constraints O into a set of formulas in
denial form, following [106], but we need to add an atom ∧validState(t) to each

6.3. Translation of BAUML into Logic 131

of them to ensure that they are only checked at the end of the execution of a
state transition diagram transition, following the semantics of the framework.

For instance, the covering constraint in the hierarchy of Bicycle indicates
that a Bicycle must have one of its subclasses’ type. Then the condition:

← Bicycle(b, t) ∧ ¬IsKindO f Bicycle(b, t) ∧ validState(t)

states that there cannot be a bicycle which has not any of its subtypes (predicate
IsKindO f Bicycle), where IsKindO f Bicycle is a derived predicate from InUse,
Available and Unusuable (see below). This condition only applies when there
are no transitions taking place, indicated by predicate validState.

IsKindO f Bicycle(b, t)← InUse(b, t)
IsKindO f Bicycle(b, t)← Available(b, t)
IsKindO f Bicycle(b, t)← Unusable(b, t)

Step 3 is the most complex and it is decomposed into various algorithms. It
generates the derivation rules that link the creation and deletion of the classes
and associations with the tasks that perform these changes, and ensures that
all tasks execute at the right time. This is done by calling Algorithms 6 and 7.

Finally, step 4 generates the remaining necessary constraints to ensure the
correct execution of the tasks by calling Algorithm 8. For instance, if there is
a sequence of tasks that execute in the activity diagram, it ensures that all of
them execute and creates the derivation rules to generate predicate validState
at the end of the execution of the activity diagram.

Algorithm 6 translateTask(task)
rules := ∅
prevRules := getContextPreviousTasks(task, t) . t represents a time term
createList contains the classes and associations created by task
delList contains the classes and associations deleted by task
for all ruleFragment ∈ prevRules do

for all el ∈ createList do
r := addEl(p, t)← task(p, x, t) ∧ pretask(t − 1) ∧ time(t) ∧ ruleFragment
rules := rules ∪ r

end for
for all el ∈ delList do

r := delEl(p j, t)← task(p j, y, t) ∧ pretask(t − 1) ∧ time(t) ∧ ruleFragment
rules := rules ∪ r

end for
rules := rules ∪ {task′(pa, t)← task(pa, z, t) ∧ pretask(t − 1) ∧ time(t) ∧ ruleFragment}

end for
return rules

132 Chapter 6. Reasoning in Practice: AuRUS-BAUML

We will now analyze the details of the remaining algorithms. Algorithm 6 is
aimed at translating the atomic tasks. As they make changes to the instances
of the class diagram, this translation will result in the derivation rules that
generate predicates addEl and delEl, where el is a class or an association. In
[105], these rules are generated by analyzing the postcondition of each task
and determining if the task creates or deletes some instance. If the task has a
precondition, then its translation (following [106]) is also added to the body
of the derivation rule to ensure that it is true at time t − 1, where t represents
the time the task executes.

However, this translation does not impose any restrictions over the order
for task execution. In BAUML tasks execute following the restrictions and the
order established by the state transition and activity diagrams. In particular,
taskk can only execute if pretaskk is true and the previous task taskk−1 has executed
at t − 1.

Algorithm 6 generates the creation and deletion rules as described, invok-
ing Algorithm 7 to obtain the part of the rule that refers to the successful
execution of the previous tasks. At the end, Algorithm 6 generates a rule of
the form:

task′(pa, t)← task(pa, z, t) ∧ pretask(t − 1) ∧ time(t) ∧ ruleFragment,

where pa corresponds to the OID of the business artifact, which we use to
ensure the proper evolution of the system, and z corresponds to the remaining
parameters or terms of task. The derived predicate of this rule, task′(...), will
be used as an indicator that task has executed properly by the next task.

Algorithm 7 is in charge of generating the part of the derivation rules that
depends on the previous node(s) of a certain node. Its complexity lies in
the fact that we consider not only linear activity diagrams, but that we also
allow decision and merge nodes. We assume that control nodes do not add
execution time to our diagrams and that they are traversed immediately. So,
given a node n that belongs to an activity diagram Pε and time t, the algorithm:

1. Obtains the previous nodes of n, stores them in prevSet and initializes
result to the empty set.

2. For each np ∈ prevSet, it checks its type.

a) If np is a task, it then adds the n′p(...) predicate to the existing result,
indicating that the task np will have executed successfully.

b) If np is a decision node, the algorithm needs to obtain the predicates
corresponding to the tasks that may execute before np; therefore

6.3. Translation of BAUML into Logic 133

Algorithm 7 getContextPreviousTasks(n,t)
result := ∅
prevSet contains the previous nodes of n
for all np ∈ prevSet do

if np is task then
result := result ∪ n′p(pa, t − 1)

else if np is decision node then
guard := getGuard(np,n)
res := getContextPreviousTasks(np, t)
for all el ∈ res do

result := result ∪ {el ∧ guard(t − 1)}
end for

else if np is merge node then
res := getContextPreviousTasks(np, t)
result := result ∪ res

else if np is initial node then
transitions contains the transitions in which the activity diagram appears
for all t ∈ transitions do

ss is the source state of t
cond is the translation of condition of t
if ss is not initial pseudostate ∧ cond is not empty then

result := result ∪ {ss(p, t − 1) ∧ cond(t − 1)}
else if ss is not initial pseudostate then

result := result ∪ {ss(p, t − 1)
else if cond is not empty then

result := result ∪ {cond(t − 1)}
end if

end for
end if
return result

end for

it invokes itself, but this time with np and t as input. As np is a
decision node, there will be a guard condition in the edge between
np and n. This guard will be translated as if it was a precondition
and it will have to be true at t − 1 in order for the task to execute.
Then, it will add the guard condition to each rule-part obtained by
the self-invocation.

c) If np is a merge node, it invokes itself with parameters np and t, and
it adds the result of this invocation to variable result.

d) If, on the other hand, np is an initial node, it adds the source state of
the state transition diagram of the transitions in which the activity
diagram appears. If there is an OCL condition, it also adds the
translation of the condition.

3. The algorithm returns variable result, containing a set of rule fragments.

134 Chapter 6. Reasoning in Practice: AuRUS-BAUML

For instance, for task Assign to Anchor Point, we have the following rules:

addAvailableIsIn(b, a, t)← assignToAnchPoint(a, b, t) ∧ AnchorPoint(a)
∧precondAssToAP(a, t − 1) ∧ Bicycle(b, t) ∧ createNewBicycle′(b, t − 1)

assignToAnchPoint′(b, t)← assignToAnchPoint(a, b, t) ∧ AnchorPoint(a)
∧precondAssToAP(a, t − 1) ∧ Bicycle(b, t) ∧ createNewBicycle′(b, t − 1)

The task creates an instance of the available is in association. It has a
precondition which must be true at t − 1, and its translation appears in the
derivation rule of addAvailableIsIn. In addition to this, the body of the rule
includes the predicate createNewBicycle′, that guarantees that the previous
operation (Create New Bicycle) has executed successfully.

Algorithm 8 generateConstraintsTaskExecution(B)
constr := ∅
for all task ∈ tasks(B) do

nn is next node of task
if nn is task then

constr := constr ∪ {← task(pa, z, t) ∧ ¬n′n(pa, t + 1)}
else if nn is decision node ∨ nn is merge node then

r :=← task(pa, z, t) ∧ ¬nextTask(pa, t + 1)
res := generateConstraintsNextTasks(n, task)
constr := constr ∪ r ∪ res

else if nn is final node then
constr := {validState(t)← task′(pa, t)}

end if
end for
return constr

With the algorithms that we have seen so far we have restricted the order for
the tasks execution in one direction, ensuring that task taskk can only execute if
taskk−1 has taken place. We also need to ensure that, once an activity diagram
begins execution, it finishes. Algorithm 8 generates the necessary constraints
to do so. For each task, it obtains its next node and, if the next node nn is a task,
it creates a rule of the form: ← task(pa, z, t) ∧ ¬n′n(pa, t + 1), where predicate n′n
corresponds to the derived predicate generated by Algorithm 6 to ensure that
task nn has executed properly. For instance, for the tasks Create New Bicycle
and Assign to Anchor Point we have the following condition and derivation
rule: ← createNewBicycle(b, t) ∧ ¬assignToAnchorPoint′(b, t + 1).

On the other hand, if nn is a decision node or a merge node, there is the
possibility that there will be more than one task that can be executed. For this
reason, the algorithm generates this rule: ← task(pa, z, t) ∧ ¬nextTask(pa, t + 1),

6.4. Formalization of Tests & Results 135

meaning that if task has executed at t one of its next tasks must have executed
at t + 1. nextTask is a derived predicate resulting from the execution of any of
the next tasks. These derivation rules are created in Algorithm 9 and have the
following form: nextTask(pa, t) ← task′n(pa, t). The algorithm iterates over the
nodes until the next task(s) are found. Guard conditions are not considered
because they have already been translated by the other algorithms.

Finally, if a task is followed by a final node, we need to generate rule:
validState(t) ← task′(pa, t). This rule will ensure that the restrictions of the
model are checked at the end of the execution. For instance, in our example
the successful execution of task Assign To AnchorPoint generates predicate
validState as it is the last task in the activity diagram:

validState(t)← assignToAnchorPoint′(b, t).

Algorithm 9 generateConstraintsNextTasks(n,task)
result := ∅
nextSet contains the set of next nodes of n
for all nn ∈ nextSet do

if nn is task then
nextTask(pa, t)← n′n(pa, t)

else if nn is decision node ∨ nn is merge node then
res := generateConstraintsNextTasks(nn, task)
result := result ∪ res

else if nn is final node ∧ n is decision node then
guard contains the guard condition from n to nn
nextTask(pa, t)← task′(pa, z, t) ∧ guard(y, t)
validState(t)← task′(pa, z, t) ∧ guard(y, t)

end if
end for
return result

There is a special case, however. If there is a decision node n and one of
the next nodes nn ∈ final(Pε) is a final node, then these rules are needed:

nextTask(pa, t)← task′(pa, z, t) ∧ guard(y, t)
validState(t)← task′(pa, z, t) ∧ guard(y, t),

which will ensure that after the execution of task, the diagram terminates if the
corresponding guard condition is met.

6.4 Formalization of Tests & Results

After showing how the BAUML models are translated into logic, we now
formalize the tests presented in Section 6.1. All the tests are represented as
checking the satisfiability of a derived predicate.

136 Chapter 6. Reasoning in Practice: AuRUS-BAUML

6.4.1 Verification Tests

Class diagram

Liveliness of a Class or Association The liveliness test of a class or an asso-
ciation will ensure that an instance of it can be successfully created and that it
persists in the system until the transition that has created it ends. The general
form of the test is the following, where el is the name of the class or association:

livelinessTestEl()← el(p, t) ∧ validState(t).

If the class or association is not created in the business process, then the
time component t would be omitted from the derivation rule shown above. As
during the execution of activity diagrams integrity constraints can be violated,
validState(t) ensures that the integrity constraint is only checked when no
activity diagrams are in the middle of an execution, i.e. when the system is in
a valid state.

Minimum and maximum cardinalities

Minimum cardinality Given a n-ary association asso, with m participants,
and a minimum cardinality of x in the extreme of class C, we would define the
test in the following way:

minCardCorrectTest()← asso(p1, ...,pm−1, c1, t) ∧ . . . ∧ asso(p1, . . . , pm−1, cx, t)
∧¬extraAsso(p1, . . . , pm−1, c1, . . . , cx, t)
∧c1 , c2 ∧ . . . ∧ c1 , cx ∧ validState(t)

extraAsso(p1, . . . , pm−1, c1, . . . , cx, t)← asso(p1, ..., pm−1, cx+1, t)
∧c1 , cx+1 ∧ . . . ∧ cx , cx+1

Maximum cardinality To avoid infinite loops, the maximum cardinality
should be bounded before running this test. Given a n-ary association asso,
with m participants, and a maximum cardinality of x in the extreme of class C,
we would define the test in the following way:

maxCardCorrectTest()← asso(p1, ..., pm−1, c1, t) ∧ . . . ∧ asso(p1, . . . , pm−1, cx, t)
∧c1 , c2 ∧ . . . ∧ c1 , cx ∧ . . . ∧ cx−1 , cx ∧ . . . ∧ validState(t)

For both tests, a satisfactory answer means that the cardinalities are correct,
whereas a negative answer means that the cardinality should be greater, in the
case of the minimum cardinality, or lower, for the maximum cardinality.

6.4. Formalization of Tests & Results 137

Redundancy of integrity constraints An integrity constraint ic is redundant
if other constraints subsume it. To look for redundancy, what we do is remove
the constraint from the schema and test if the model can fulfill the constraint:

icRedundant()← ic(t) ∧ validState(t)

If the result is positive, it means that there is no other constraint restricting
ic. Therefore, ic is not redundant. On the other hand, if the result is negative,
then ic is redundant and can be deleted from the schema.

State Machine Diagram

State reachability As we have already mentioned, checking the reachability
of a state is equivalent to checking the liveliness of the corresponding class el:

stateReachabilityTest()← el(p, t) ∧ validState(t).

Transition Applicability Given a transition t = 〈vs, o, e, c, x, vt〉, checking its
applicability means ensuring that vs is reachable and that o (if any) is true:

transApplTest()← predVs(p, t)[∧ocl(t)] ∧ validState(t)

predVs corresponds to the predicate representing the subclass that corre-
sponds to state vs, ocl the ocl condition o in the transition (if there is one). We
have to ensure that these conditions are met on a validState(t), as transitions
begin their execution on this state.

Transition Executability There are many factors that should be considered
for the executability of a transition t = 〈vs, o, e, c, x, vt〉:

1. The source state vs.

2. Any OCL conditions that may appear in the transition: o.

3. The target state vt.

4. The event e or effect x which is part of t

5. There cannot be any intermediate valid state (validState(t)) between the
source state vs and vt. Otherwise, this would mean that the system has
evolved through other transition(s) which have finished successfully.

138 Chapter 6. Reasoning in Practice: AuRUS-BAUML

Conditions 1 and 2 refer to the time, t1, before the execution of the transition
begins. In contrast, condition 3 refers to the time, t2, at the end of the execution.
Between t1 and t2 the tasks in e or x will execute.

Bearing all this in mind, the form of the test will be the following:

transExecTest()← predVs(oid, . . . , t1)[∧ocl(t1)] ∧ validState(t1) ∧ predVt(oid, . . . , t2)
∧ validState(t2) ∧ ¬validState(t3) ∧ time(t3) ∧ t1 < t2 ∧ t1 < t3
∧ t3 < t2 ∧ execLastTask′(oid, . . . , t2)

execLastTask′(oid, . . . , t2) corresponds to the last task in the activity diagram
corresponding to event e or effect x. This will ensure that we are executing
the right event or effect to perform the transition. predVs and predVt are the
predicates representing the subclasses that correspond to the source and the
target states, respectively.

Activity Diagram & Operation Contracts

We have defined the translation of the BAUML models into logic in a way in
which activity diagrams cannot stop in the middle of an execution: they either
execute successfully or they do not execute at all. Therefore, if we do not make
some changes, the result of the executability and applicability tests of the tasks
will depend, in the general case, on the executability of the event or effect they
are part of. Therefore the tests would not provide any additional information.

What it would be interesting is to know if a task is applicable or executable
considering only the context required up to the point of its execution. To
achieve this, we could generate the logic schema without any of the predicates
and rules produced by Algorithm 8 which force the execution to move forward.

Applicability Test This test will check whether a certain task can be executed,
that is, if the necessary requirements for its execution are met. The test will
have the following form, for task taski:

applicabilityTask()← pretask(y, t) ∧ task′i−1(pa, t).

Executability Test The executability test will check if a certain task can be
executed. It is particularly useful for those activity diagrams with decision
nodes to ensure that all paths can be taken. The test will have the following
form:

executabilityTask()← task′(pa, t).

6.4. Formalization of Tests & Results 139

Notice that it is equivalent to checking if the predicate task′ can be generated,
as task′ represents precisely the successful execution of task.

6.4.2 Validation Tests

Path Inclusion or Exclusion There are three tests (of two different types)
that we can perform to check path inclusion and exclusion between two rela-
tionships that have the same participants. asso1 and asso2 are the associations
which have the same participants p1 to pn.

pathIncExcTest1()← asso1(p1, ..., pn, t) ∧ asso2(p1, ..., pn, t) ∧ validState(t)

pathIncExcTest2()← asso1(p1, ..., pn, t) ∧ ¬asso2(p1, ..., pn, t) ∧ validState(t)

pathIncExcTest3()← asso2(p1, ..., pn, t) ∧ ¬asso1(p1, ..., pn, t) ∧ validState(t)

The first test checks if it possible for asso1 and asso2 to have instances with
exactly the same participants. Tests 2 and 3 check the opposite: is it possible
to have instances of asso1 (asso2) if there is not the corresponding instance in asso2
(asso1)?

Test Result
True False

pathIncExcTest1 Allows path inclusion Does not allow path inclusion
→ Path exclusion

pathIncExcTest2 asso1 does not depend on
asso2

asso1 requires asso2 → Path
inclusion

pathIncExcTest3 asso2 does not depend on
asso1

asso2 requires asso1 → Path
inclusion

Table 6.2: Table showing the interpretation of the different results for the path
inclusion and exclusion tests.

Table 6.2 summarizes the meaning of the results of the tests. A positive
result in the tests may indicate that there is a constraint missing, whereas a neg-
ative result will indicate that the paths are mutually exclusive (pathIncExcTest1)
or that they are inclusive (pathIncExcTest2 and pathIncExcTest3).

140 Chapter 6. Reasoning in Practice: AuRUS-BAUML

Missing irreflexive constraints Given an association asso which relates the
same class c to itself, we can check if it is reflexive by performing the following
test:

re f lexTest()← asso(r1, r1, t) ∧ validState(t)

A positive result will indicate that the association is reflexive and that there
might be an integrity constraint missing.

Full transition coverage The full transition coverage test checks if all poten-
tial combinations of transitions can actually take place.

To perform this test, we need to generate, first of all, a set of sequences of
transitions that correspond to valid evolutions of the artifact through the state
machine diagram. Then, for each of these sequences with transitions trans1 to
transn, we create the following test:

transCovTest()←lastTasktrans1 (oid, ..., t1) ∧ . . . ∧ lastTasktransn (oid, ..., tn)
∧ t1 < t2 ∧ . . . ∧ tn−1 < tn ∧ ¬intValidState(t1, t2) ∧ . . .∧
¬intValidState(tn−1, tn)

intValidState(ta, tb)←time(ta) ∧ time(tb) ∧ time(tc) ∧ ta < tc ∧ tc < tb∧

validState(tc)

Predicate intValidState is necessary to ensure that the only transitions exe-
cuted in the diagram are the ones stated in the first derivation rule (i.e. there are
no valid states in between transition executions, as this would imply that addi-
tional transitions have taken place). If the test is satisfiable, then the sequence
of transitions is valid. On the other hand, if it is not, this may indicate an error
in either the executability of the transitions themselves or in this particular
combination of transitions. If the transitions have been checked satisfactorily
for their executability, then the issue is in the combination of transitions.

6.4.3 Some Test Results

This subsection presents the results and the corresponding screenshots for
some of the tests applied to our Bicing example.

Verification

Transition Applicability Test We will first show the results for the transition
applicability test, for transition Pick Up Bicycle. In this case, the transition has

6.4. Formalization of Tests & Results 141

no conditions and its source state is Available, so the corresponding test will
have the following form:

appTransTestPickUp()← Available(b, t) ∧ validstate(t).

Figure 6.8: Result of the Pick Up Bicycle transition applicability test in AuRUS-
BAUML.

Figure 6.8 shows the result of the test. As highlighted in the image, tran-
sition Pick Up Bicycle is applicable. By double-clicking on the result, the tool
opens a new window detailing the base predicates required to achieve the
goal: in this case, reaching a point where the transition can be applied.

142 Chapter 6. Reasoning in Practice: AuRUS-BAUML

Figure 6.9: Details of the required base predicates to achieve the results

Figure 6.9 shows the required base predicates to achieve the results. Note
that there are predicates corresponding to classes (e.g. Station or AnchorPoint)
and to tasks (e.g. CreateNewBicycle, AssignToAnchorPoint). The predicates rep-
resenting classes correspond to those which are not created by the operations
in the model, and therefore they do not include a time component. On the
other hand, the predicates corresponding to the operations have a component
representing the time (the last term). In consequence, from the result we can
see the order in which the tasks can execute to obtain the reach the necessary
conditions for Pick Up Bicycle to execute.

Liveliness Test To test the liveliness of BicycleRental, we would define the
following derivation rule:

livelinessTestBicycleRental()← BicycleRental(br, b, a, t) ∧ validstate(t).

Figure 6.10 shows the result of applying the test to our example. As it
can be seen in the result, the test executes successfully as there is a sample
instantiation that satisfies the goal of the test.

Validation

User-defined tests In the context of our Bicing example, another validation
test would be checking whether Blacklisted users are allowed to rent a bicycle.
In this case, the test cannot be generated automatically and requires user
intervention. The formalization of this property is as follows:

blacklistedUserRent()← Blacklisted(u) ∧ BicycleRental(b,u, i, t) ∧ validState(t)

6.5. Summary & Conclusions 143

Figure 6.10: Figure showing the result of checking the liveliness of Bicy-
cleRental.

Figure 6.11 shows the result of executing the test. It shows that it executes
successfully: there is an instantiation proving that blacklisted users are allowed
to rent bicycles. This is clearly a mistake, due to the fact that an integrity
constraint is missing in the class diagram. Figure 6.12 shows the required
predicates to achieve the result.

6.5 Summary & Conclusions

As we have explained, checking the correctness of BAUML models as early as
possible is important to avoid the propagation of errors to the implementation
of the process. Unfortunately, there were no tools to reason with our BAUML
models.

To solve this and to show the feasibility of our approach, we have imple-

144 Chapter 6. Reasoning in Practice: AuRUS-BAUML

Figure 6.11: Result that answers the question Can blacklisted users rent a bicycle?.

mented a tool, AuRUS-BAUML, that given a BAUML model, it automatically
translates it into logic. It then provides a list of available tests to the user, and
the user is able to select the tests he is interested in performing. After this the
tool reasons with the logic schema and the goal that corresponds to the test,
and provides a result.

This result will either be a sample instantiation proving the satisfiability
of the test, or a list of the restrictions which prevent its fulfillment. Note that
AuRUS-BAUML does not require an initial instantiation of the schema.

Despite the potential of this tool, at the time of writing it suffers from
efficiency issues. The simpler tests are performed quite rapidly, but the most
complex ones may take hours or even not finish due to the cost of the search
for a solution.

According to [99], the cost of evaluating negative literals is estimated as
being 75 times higher than positive ones. Unfortunately, the way we define the

6.5. Summary & Conclusions 145

Figure 6.12: Details of the operations and classes required to obtain the result.

translation of the BAUML model requires the use of restrictions which include
negative literals to ensure the proper execution of the activity diagram. This
probably hinders the execution time of SVTe, the reasoner used in our tool.

Considering this, a clear area for further work would be working on the
efficiency of the reasoner and even perhaps making changes to the translation
to improve the overall response times.

Finally, it would be useful to make AuRUS-BAUML compatible with the
XMI files generated by other diagramming or CASE tools other than Ar-
goUML, such as Visual Paradigm. Visual Paradigm [131] is a commercial
tool which also offers a free community edition for non-commercial purposes.
Although the community edition has some limitations, it allows exporting the
UML diagrams into an XML file and is updated regularly.

Chapter 7

Decidability

After presenting two different ways of reasoning with our BAUML framework,
this chapter deals with decidability. In particular, it studies whether it is
decidable to check a property defined in a certain type of logic (a fragment
of µ-calculus) over a BAUML model. To do so, it reduces the models to the
halting problem of 2-counter machines, proving the undecidability, and from
there it establishes restrictions over them to ensure their decidability. The
goal is to single out the various sources of undecidability in terms of their
verification and validation.

The first part of this chapter introduces the necessary concepts and back-
ground on 2-counter machines and a new running example. The second
section focuses on the decidability analysis by incrementally restricting the
models to ensure their decidability with the minimum number of restrictions.
The third section discusses the implications of the analysis in our Bicing exam-
ple. At the end of the chapter, we summarize our results and point out some
conclusions.

7.1 Background

This section begins by giving a brief overview of 2-counter machines. We will
use the halting problem of 2-counter machines to prove the undecidability of
the various theorems presented in the chapter. After this, we introduce the
running example that we will use to illustrate the theorems and the intuition
behind the proofs in this chapter.

147

148 Chapter 7. Decidability

7.1.1 2-Counter Machines

Counter machines are used to model a computation. A counter machine has:

• A set of counters or registers

• A list of commands or instructions to be followed by the machine

The counters can only contain non-negative integers. An input for a counter
machine will be a set of values to initialize its registers or counters. We say
that the counter machine halts on input I if the execution of the instructions
reaches the final command, HALT, which stops the machine.

Given a 2-counter machine, it is well-known that checking if it halts on a
given input is undecidable [93]. Therefore, we can say the following:

Corollary 7.1.1. It is undecidable to check whether a 2-counter machine halts on
input 〈0, 0〉.

Corollary 7.1.1 will be the basis to prove the theorems in the following
section.

7.1.2 Running Example: An Online-Retailer

This subsection presents a new example to better illustrate the variety of results
of this chapter. It is based on a system for a company that registers orders from
customers, and stores information about the orders made by the company to
its suppliers. Our example is likely to specify a simplified version of the
artifact-centric process models of an online shop like Amazon.

Figure 7.1 shows two business artifacts: Order and SupplierRequest.
Order has two substates: RequestedOrder and SentOrder, that track the
order’s evolution. A RequestedOrder is related to various ItemTypes, in-
dicating the products that the customer wishes to purchase. On the other
hand, SentOrder is related to Items, which have a certain ItemType. That
is, SentOrders are directly related to specific items identified by their serial
number. Notice that apart from the artifact itself, the associations makes, has,
and buys in which it takes part, are also created and deleted by the process.

Similarly, SupplierRequest represents the requests made to the supplier.
It has two possible substates: PlacedSuppRequest and ReceivedSuppRequest,
and it is related to ItemType, the association class that results from this rela-
tionship states information about the quantity of items of a certain type that
have been requested to the supplier.

7.1. Background 149

 id

Customer
 id
 date

Order

 id

Supplier

 expectedDispatch

RequestedOrder

 trackingNr
 sentDate

SentOrder

 id
 price

ItemType

 id
 date

SupplierRequest

 quantity

SuppItemType

 reason

PlacedSuppRequest

 receptionDate

ReceivedSuppRequest

 serialNr

Item 1..*

*

1..*

*

1*

1..*

0..1

has

* 1

1..* 1has type

{disjoint, complete}request_state

made at

buys

order_state {disjoint, complete}

makes

Key constraints: serialNr for Item, id for the other classes.

Figure 7.1: Class diagram for our online-retailer example

In this example, we assume that some classes/associations are read-only.
This is the case, e.g., for ItemType.

Order:

ReceivedSuppRequestPlacedSuppRequest

SentOrderRequestedOrder

Receive Supplier OrderOrder Products at Supplier

Send OrderOrder Products

Visual Paradigm for UML Community Edition [not for commercial use]

SupplierRequest:
ReceivedSuppRequestPlacedSuppRequest

SentOrderRequestedOrder

Receive Supplier OrderOrder Products at Supplier

Send OrderOrder Products

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 7.2: Artifact state machines for artifacts Order and SupplierRequest.

Both artifacts Order and SupplierRequest evolve independently from each
other, with a lifecycle specified by the state machines of Figure 7.2. Their
meaning is very intuitive. In the case of Order, when event Order Products
takes place, the RequestedOrder is created. When we have a requested or-
der and event Send Order executes, the order is sent to the customer and
the artifact changes its state to SentOrder. The state machine diagram for
SupplierRequest is analogous to that of Order.

Each of the events in the lifecycle transitions (Order Products, Send Order,
Order Products at Supplier and Receive Supplier Order) are further defined using
an activity diagram, which shows the units of work (i.e., the tasks) that are
carried out, together with their execution order.

150 Chapter 7. Decidability

Order Products

Send Order

Order Products at Supplier

Receive Supplier Order

Create New
Customer Order

Add Item
Type

Mark Order as
Sent

Create Supplier
Request

Add Item Type

Mark Supplier
Request as Received

Assign Items to Order

[no more to add]

[more to add]

[more products to add]

[no more products to add]

Visual Paradigm for UML Community Edition [not for commercial use]

Send Order

Assign Items to Order

Figure 7.3: Activity diagrams for the events of Order

Figure 7.3 shows the activity diagrams for the events of Order. As for the
Order Products event, the first task creates a new order, and the second task,
which can be executed many times, adds an item type to the order that has
been previously created. As for the Send Order event, its task adds the items
to the order, marking it as sent.

Below we show the OCL operation contracts for the tasks in Figure 7.3.

Listing 7.1: Code for task Create New Customer Order
operat ion createNewCustomerOrder (orderId : String , date : Date , expDisp : Date ,

customerId : String) : RequestedOrder
pre : not (RequestedOrder . a l l I n s t a n c e s ()−> e x i s t s (ro | ro . id=orderId)) and

Customer . a l l I n s t a n c e s ()−> e x i s t s (c | c . id = customerId)
post : RequestedOrder . a l l I n s t a n c e s ()−> e x i s t s (ro | ro . oclIsNew () and ro . id=orderId

and ro . date=date and ro . expectedDispatch=expDisp and
ro . customer . id=customerId and r e s u l t=ro)

CreateNewCustomerOrder receives as input the necessary parameters to cre-
ate a new instance of the artifact RequestedOrder. Its precondition makes sure
that no other order with the same identifier exists and that the customer ID
is valid. It returns the RequestedOrder that has been created with the input
parameters.

Listing 7.2: Code for task AddItemType
operat ion AddItemType (idItemType : String , ro : RequestedOrder)
pre : not (ro . itemType . id−>inc ludes (idItemType))
post : ro . itemType . id−>inc ludes (idItemType)

AddItemType adds an ItemType to the order that has been created in the
previous operation. Its precondition checks that the item type has not been

7.2. Results of Our Decidability Analysis 151

already added to the order, and the postcondition creates the relationship
between the given order and the right item type.

Notice that we assume that the artifact instance that is returned by the
first operation, CreateNewCustomerOrder, is reused in the following operations.
This assumption is necessary to ensure that we are always dealing with the
same artifact instance.

Listing 7.3: Code for task AssignItemsToOrder
operat ion AssignItemsToOrder (o : RequestedOrder , date : Date)
pre : o . itemType−> f o r A l l (i t | i t . item−>e x i s t s (i | i . sentOrder−>isEmpty ()))
post : o . oclIsTypeOf (SentOrder) and not o . oclIsTypeOf (RequestedOrder) and

o . oclAsType (SentOrder) . sentDate=date and o . itemType−> f o r A l l (i t |
o . oclAsType (SentOrder) . item−> inc ludes (i t . item@pre−> s e l e c t (i |
i . sentOrder−>isEmpty () . asOrderedSet ()−> f i r s t ())))

AssignItemsToOrder checks whether for the given RequestedOrder o it is the
case that there are available items (i.e., that have not been assigned to a Sen-
tOrder) for each of the requested item types. If so, o becomes a SentOrder that
is associated to an available item for each of the requested item types.

These operation contracts show that the only elements that are created are
the artifact itself and its relationships to other objects. Notice again that class
ItemType, which is shared by Order and SupplierRequest, is never modified by
the tasks, and is in fact read-only. Moreover, all the actions that are not attached
to the initial transition take as input an instance of the artifact type whose
evolution is being modeled in the corresponding state machine, as required by
our methodology. Notice that the navigation of all the OCL expressions in the
pre and postconditions starts from the instance of the instance of the artifact in
the corresponding state machine diagrams: an Order (or one of its subclasses)
in our example.

7.2 Results of Our Decidability Analysis

After presenting the background on 2-counter machines and introducing our
example, the purpose of this section is to carefully analyze the interaction
between the dynamic and static component of BAUML models, in order to
identify the various sources of undecidability when it comes to their verifi-
cation. We show in particular that all the restrictions we introduce towards
decidability of verification are required: by relaxing just one of them, verifica-
tion becomes again undecidable.

Among the properties of interest for BAUML models, we consider in par-
ticular the fundamental requirement of artifact termination. Intuitively, this

152 Chapter 7. Decidability

property states that in all possible evolutions of the system, whenever an ar-
tifact instance of a certain type is present in the system, it must persist in the
system until it eventually reaches (in a finite amount of computation steps) a
proper termination state. Remember that such a state will have a counterpart
in the UML model of B, which will contain a subclass for that specific state.
By denoting with termA ∈ a-states(A) the proper termination state of arti-
fact A ∈ artifacts(B), and by considering the standard FOL encoding of UML
classes as unary predicates, the artifact termination property can be formalized
in µLp as follows:

νZ.
(∧
A∈artifacts(B)

(∀x.A(x)→ µY.termA(x) ∨ (A(x) ∧ 〈−〉Y))
)
∧ [−]Z

In the following, all the undecidability results we give do not only hold
for the µLp logic in general, but specifically for the artifact termination prop-
erty. Furthermore, we do only consider data coming from a countably infinite
unordered domain, and that can only be compared for (in)equality. We thus
avoid any assumption on the structure of data domains, and consider only
string and boolean attributes1. In this light, our results witness that it is not
possible to achieve meaningful restrictions towards decidability just by re-
stricting the property specification logic, but that it is instead necessary to
suitably restrict the expressiveness of BAUML models themselves.

The following subsections are structured according to the restrictions that
the different theorems presented in each of them share in common: the first
subsection deals with unrestricted models, the second subsection analyzes
what we call “models with non-shared instances” and the last one deals with
“models with shared instances”.

7.2.1 Unrestricted Models

Our analysis starts by showing that, if we do not impose restrictions on the
shape of OCL queries used in the pre-/post-conditions of tasks and in the
decision points of a BAUML model, then verification of artifact termination is
undecidable. We say that a BAUML model is unrestricted if it does not impose
any restriction on the shape of such queries.

Theorem 7.2.1. Checking termination over unrestricted BAUML models is unde-
cidable.

1A boolean attribute can be considered as a special string attribute that can only be assigned
to the special strings true or false. This constraint can be easily expressed in OCL.

7.2. Results of Our Decidability Analysis 153

Proof. By reduction from the halting problem of 2-counter machines, which is
undecidable (cf. Corollary 7.1.1). See page 204 for details. �

The intuition behind the proof is that there is an unbounded number of
artifacts and objects in the model, and that artifacts freely manipulate instances
of other classes. Therefore, this can potentially lead to situations in which an
infinite number of artifact and/or objects is created.

7.2.2 Models with Non-Shared Instances

As our goal is to determine the conditions over the initial models that guarantee
decidability, the first restriction that we impose on this section is that the
artifacts in business processes do not share objects which are created in the
model. We emphasize this characteristic because the following section will
give a brief analysis of business processes whose artifacts do share object
instances.

Navigational and Unidirectional Models The proof of Theorem 7.2.1 relies
on the fact that artifact instances freely manipulate (i.e., create, read, delete)
instances of other classes. Towards decidability, we have therefore to properly
control how artifact instances relate to other objects. For this reason, we
suitably restrict OCL expressions, by allowing only so-called navigational
expressions.

To define navigational queries over a BAUML model B = 〈M,O,S,P,T〉,
we start by partitioning the associations and classes inM into two sets: a read-
only setMr, and a read-write setMrw. Intuitively,Mr represents the portion
of M whose data are only accessed, but never updated, by the execution of
tasks, whereasMrw represents the portion ofM that can be freely manipulated
by the tasks. These two sets can either be directly specified by the modeler,
or easily extracted by examining all postconditions of operations present in
T , marking a class C as read-write every time a sub-expression obj.oclIsNew()
appears in some operation, and obj is an instance of C. In this light, all artifacts
present inM are always part of the read-write set: artifacts(M) ⊆ Mrw.

Given an object obj, an OCL expression is navigational from obj if it is defined
by means of the usual OCL operations like exists, select, . . . , but in which each
subexpression is a boolean combination of expressions Qi that obey to one of
the following two types:

• Qi only uses role and class names fromMr;

154 Chapter 7. Decidability

• Qi has the form of a path o.r1 · · · rn, which starts from o and navigates
through roles r1 to rn, where each ri is either a role or an attribute, and
where o is either the original object obj, or a variable used in the current
operation.

A BAUML model B = 〈M,O,S,P,T〉 is navigational if:

• For every operation inT , with the exception of the init operation (i.e. the
operation that creates the artifact), the OCL expressions used in its pre-
and post-conditions are navigational from a, where a is (the name of) the
artifact instance taken as input by the operation.

• Every condition in conditions(B) is an OCL expression that is naviga-
tional from (the name of) the artifact instance present in the scope of the
condition.

Navigational BAUML models do not allow artifact instances to share objects
from read-write classes. Indeed, for an artifact instance to establish a relation
with an object of class C previously created by another artifact instance, it is
necessary to write an OCL query that selects objects of type C, but this query
is not navigational.

In spite of this observation, we will see that restricting BAUML models
to navigational queries is still not sufficient, but additional requirements are
needed towards decidability. The first requirement is related to the way OCL
expressions navigate the roles in M. Given a navigational BAUML model
B = 〈M,O,S,P,T〉, and given a role r inM, if there exists an OCL expression
inB that mentions r, then we say that r is a target role, written trgB(r), otherwise
we say that r is a source role, written srcB(r). We use this notion to define the
notion of dependency between two classes.

Given classes C1 and Cn+1 inM, we say that Cn+1 depends on C1 if there exists
a tuple 〈A1, . . . ,An〉 of binary associations such that each Ai connects Ci and
Ci+1, and the role of Ai attached to Ci+1 is a target role. We then say that B is
bidirectional if it is navigational and there exists a class inMrw that depends on
itself or on one of its super/sub-classes, unidirectional if it is navigational and
there is no class inMrw that depends on itself or on one of its super/sub-classes.
Intuitively, for a unidirectional BAUML model it is possible to mark each
association in its UML model as directed (since no association can have both
nodes as targets), and the resulting directed graph is acyclic. This property, in
turn, can be tested in NLogSpace.

7.2. Results of Our Decidability Analysis 155

 id

Customer
 id
 date

Order

 id

Supplier

 expectedDispatch

RequestedOrder

 trackingNr
 sentDate

SentOrder

 id
 price

ItemType

 id
 date

SupplierRequest

 quantity

SuppItemType

 reason

PlacedSuppRequest

 receptionDate

ReceivedSuppRequest

 serialNr

Item

items

1*

* 1

1..*

*

1..* 1

1..*

*

1..*

0..1

has

has type

{disjoint, complete}request_state

made at

buys

order_state {disjoint, complete}

makes

Figure 7.4: Class diagram for an online retailer example. The arrows indicate
the direction in which the OCL queries navigate the class diagram.

Unfortunately, the following result shows that restricting BAUML models
to be unidirectional is not sufficient to obtain decidability of checking termi-
nation properties.

Theorem 7.2.2. Checking termination of unidirectional BAUML models is undecid-
able.

In this case, the intuition behind the proof is that, despite having OCL
queries that are navigational and unidirectional, still an unbounded number
of objects can be created. The details of the proof can be found on page 207.

If we return to our example and examine the postconditions of the oper-
ations, we can see that the model fulfills the navigational and unidirectional
restrictions. First of all, all the queries are navigational, because all the as-
sociations that are created in the OCL operation contracts select instances of
classes which belong to the read-only set. Secondly, they are also unidirec-
tional: Figure 7.4 shows the class diagram we had at the start, but now we
have incorporated the information over the direction in which the diagram
is navigated by the OCL queries. As it can be seen, there are no cycles, and
thus it is unidirectional. Still, as we have seen, checking termination over this
model is undecidable, as there could be an unlimited number of ItemTypes or
Items, for instance.

156 Chapter 7. Decidability

Cardinality-Bounded Models To overcome the undecidability, which is due
to the unbounded multiplicities in the target roles, we introduce the notion of
cardinality-bounded BAUML model. A BAUML modelB = 〈M,O,S,P,T〉 is
cardinality-bounded ifB is navigational and each target role inM has a bounded
cardinality, i.e., is associated to a cardinality constraint whose upper bound is
numeric. B is N-cardinality-bounded if the maximum upper bound associated
to a target role is N. If there exists at least a target role with unbounded
cardinality, i.e., associated to a cardinality constraint whose upper bound is ∗,
then B is instead said to be cardinality-unbounded. Notice that no cardinality
restriction is imposed, for cardinality-bounded models, on the cardinalities
associated to roles that are not target roles.

With all these notions at hand, we are now able to state the main result of
this chapter.

Theorem 7.2.3. Let B be an arbitrary unidirectional, cardinality-bounded BAUML
model. Verifying whether B satisfies a µLp property navigationally compatible with
B is decidable, and reducible to finite-state model checking.

The proof of this theorem can be found on page 209. The intuition be-
hind the proof is the following. First of all, we have unidirectional navigation
through the elements of the class diagram and artifact instances evolve inde-
pendently one from the other. This leads to some kind of isolation property,
which allows us to consider the artifact instances in the initial database plus
an additional one. Secondly, the number of created elements in the diagram is
bounded due to the bounded cardinalities in the target roles. In consequence,
there is an upper bound on the total number of elements that can be created.

Bearing this in mind, we should bound the cardinalities in the target roles
in our example to ensure decidability. Figure 7.5 shows the result of doing so.

An important open point is whether cardinality-boundedness is a suf-
ficient restriction for decidability per sè, i.e., without necessarily imposing
unidirectionality. The following theorem provides a strong, negative answer
to this question, witnessing that both restrictions are simultaneously required
towards decidability.

Theorem 7.2.4. Checking termination of 1-cardinality-bounded, bidirectional
BAUML models is undecidable.

The details of the proof of this theorem can be found on page 210. In
this case, the source of undecidability is due to the fact that, although the
cardinalities are bounded, the total number of instances is not. Therefore,

7.2. Results of Our Decidability Analysis 157

 id
Customer id

 date

Order
 id
Supplier

 expectedDispatch
RequestedOrder

 sentDate
SentOrder

l'una de l'altra. Comparteixen l'objecte ItemType, ja que és proveït pel Supplier i

 id
 price

ItemType

 id
 date

SupplierRequest

 quantity
SuppItemType

 reason
PlacedSuppRequest

 receptionDate
ReceivedSuppRequest

 serialNr
Item

1*

1..k1

0..1

has
1..k2

*

1..* 1

* 1

1..k3

*

has type

{disjoint, complete}request_state

made at

buys

order_state {disjoint, complete}

makes

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 7.5: Class diagram for the online retailer example with bounded cardi-
nalities.

the associations in the model could be navigated back and forth creating an
unlimited number of class instances.

7.2.3 Models With Shared Instances

As argued in Section 7.2.2, unidirectional BAUML models are not able to make
artifact instances share (read-write) objects. In this section, we study what hap-
pens if we relax unidirectionality so as to support this feature. An unidirectional
BAUML model with shared instances B = 〈M,O,S,P,T〉 is a BAUML model in
which, inside navigational expressions, it is possible to add free queries over
Mrw, as long as they do not contain the expression oclIsNew(). Intuitively, this
means that new objects can only be created through standard navigational
OCL expressions, but at the same time it is possible to establish associations
with already existing objects that are not reachable by simply navigating from
the artifact instance. The following theorem shows that this relaxation makes
verification again undecidable.

Theorem 7.2.5. Checking termination of 1-cardinality-bounded, unidirectional
BAUML models with shared instances is undecidable.

The proof of this theorem can be found on 212. The intuition for this proof
relies on the fact the evolution of artifacts is no longer isolated, as they now
share read-write instances.

158 Chapter 7. Decidability

We close this thorough analysis by showing that, if we introduce a bound
on the number of artifact instances that are simultaneously active in the system,
verification becomes decidable for this specific class of BAUML models. This
technique cannot be applied to unrestricted nor unbounded BAUML models:
by inspecting the proofs of Theorems 7.2.1 and 7.2.2 on pages 204 and 207,
one can easily notice that undecidability holds even when there is just a single
active artifact instance.

Theorem 7.2.6. Verification of µLp properties over cardinality-bounded, unidirec-
tional BAUML models with shared instances of read-write classes is decidable and
reducible to finite-state model checking when the number of simultaneously active
artifact instances is bounded.

The details of the proof of this theorem can be found on page 216. In this
case, an artifact instance can only create a certain number of objects, and the
number of simultaneously active artifact instance is also bounded. This leads
to decidability.

Although our example falls in the case of Theorem 7.2.3, let’s suppose for a
moment that ItemType is a read-write class modified by one of the artifacts. In
this case, both artifacts would be sharing a read-write relation. In consequence,
we would require an additional bound on number of simultaneously active
artifact instances, so as to fall into Theorem 7.2.6. It would be sufficient to add
a bound to number of instances of a certain artifact. See Figure 7.6, classes
Order and SupplierRequest, with multiplicities M and N, respectively.

It is important to observe that this bound still allows one to create an
unbounded amount of artifact instances over time, provided that they do not
accumulate in the same snapshot. In this light, Theorem 7.2.6 closely resembles
the result given in [122] for business artifacts specified in the GSM notation.

7.2.4 Applicability of the Results to the Bicing Example

Given the results that we have obtained previously, we show their application
to the Bicing example with two artifacts that we defined in Section 3.3 on page
50. In this example, users are allowed to rent more than one bicycle and the
evolution of User and Bicycle is intertwined, e.g. when a user rents a bicycle,
both the state of bicycle and user change.

By just looking at Figure 3.9 on page 52, we can see that the model does
not fulfill the restrictions that ensure decidability. Artifacts User and Bicycle
are directly connected to each other and they do not evolve independently.

7.3. Summary & Conclusions 159

 id
Customer id

 date

Order
 id

Supplier

 expectedDispatch
RequestedOrder

 sentDate
SentOrder

 id
 price

ItemType

 id
 date

SupplierRequest

 quantity
SuppItemType

 reason
PlacedSuppRequest

 receptionDate
ReceivedSuppRequest

 serialNr
Item 1..* 1

1..k1

0..1

has

1..k3

*

1..k2

*

* 1

1*

has type

{disjoint, complete}request_state

made at

buys

order_state {disjoint, complete}

makes
NM

Figure 7.6: Class diagram with multiplicities in the artifacts’ classes to ensure
decidability.

Moreover, there is no bound on the number of artifact instances, which leads
to undecidability.

7.3 Summary & Conclusions

This chapter has presented a decidability analysis for validating artifact-centric
business process models defined using the BAUML framework. We have lifted
the conditions for decidability from formal and low-level representations to
the business level. Therefore, these conditions can be taken into consideration
by the modeler of the process.

To sum up the results of the analysis, we have found that, in order to guar-
antee decidability when validating the models, all of the following conditions
should be met:

• Artifacts should be related to a bounded number of objects.

• Two different artifacts can only share read-only objects.

• The OCL expressions should be navigational.

• There are no loops when navigating the associations between two classes,
i.e. they are not navigated back and forth.

160 Chapter 7. Decidability

If the model contains shared read-write objects by the artifact-instances the
validation becomes undecidable. To regain decidability, we need to establish
a bound on the number of simultaneously active artifact instances.

Part IV

Closure

161

Chapter 8

Conclusions

The general aim of this PhD thesis was to contribute to the field of artifact-
centric business process modeling. In particular, we had two main goals:

1. Find a way to model artifact-centric business process following the
BALSA framework, using a high-level language that was easy to un-
derstand by the people involved in the business process and at the same
time formal enough to avoid ambiguities.

2. Find a method to check the semantic correctness of the artifact-centric
business process model as defined above.

This chapter summarizes the contributions in relation to these goals, and
presents the conclusions associated to the results. After this, we point out
possible ways of extending this work and give the details of the papers and
articles that have been published and which are related to this thesis.

8.1 Contributions

This section presents our contributions and conclusions in relation to our re-
search goals, which we presented in the Introduction. It is structured according
to the two areas of our research goals: modeling business processes from an
artifact-centric perspective and reasoning with them.

163

164 Chapter 8. Conclusions

8.1.1 Modeling Artifact-centric Business Process Models

As we have explained, the first goal of this thesis was to find a way to model
artifact-centric business processes using a high-level language that was under-
standable and with precise semantics to avoid ambiguities. The artifact-centric
approach, in contrast to traditional process-centric modeling, specifies the data
required by the business process, and in consequence, is also able to define
precisely the meaning of the tasks.

One of the challenges in the artifact-centric world was to find the most
appropriate model, depending on its purpose,to represent each of the dimen-
sions of the BALSA framework. This framework defines four dimensions for
artifact-centric business process models: the business artifacts, which show
the relevant data for the business; the lifecycles, representing the evolution
of the business artifacts; the services, which correspond to tasks, or units of
work in which the business process is decomposed; and the associations, that
establish restrictions over the services.

As we have explained in Chapter 2, most of the existing works either used
representations which were intuitive but too informal to have a precise mean-
ing or were grounded on logic, which made them very formal, but impractical
from the point of view of business.

Therefore, we proposed in Chapter 3 a way to model business processes
following an artifact-centric perspective which is based on the BALSA frame-
work and uses a set of models grounded on UML and OCL. We call it the
BAUML framework. To sum it up, we use a class diagram to represent the
business artifacts, a state machine diagram to represent the lifecycle of these
artifacts, a set of OCL operation contracts to define the details of the tasks or
services, and activity diagrams to show the associations between the tasks. The
chapter includes both an informal and a formal description of the framework,
together with two examples to illustrate it.

Using UML and OCL provides us with a high-level (and graphical, in the
case of UML) representation of business processes which is independent from
their final implementation. In addition to this, they both are ISO standard
languages and they avoid ambiguities. Finally, the two languages integrate
naturally and can be used to represent all of the dimensions of the BALSA
framework, as we have seen.

8.1. Contributions 165

8.1.2 Reasoning on Artifact-centric Business Process Models

The second goal of the thesis was to find a way to determine the correct-
ness of an artifact-centric business process model defined using the BAUML
framework.

As we mentioned in the Introduction, there are several types of correctness
that can be assessed. Because artifact-centric business process models define
both the data and the details of the tasks, checking the semantic correctness of
these models becomes possible. In contrast to checking only their syntactical
or structural correctness, dealing with the semantic correctness allows us to
check properties such as the executability of the tasks in the model or the
liveliness of the data. More importantly, it allows us to ensure that the model
fulfills the business requirements.

Dealing with the semantic correctness of artifact-centric business process
models has proved to be an important research topic, as we have already seen.
However, the majority of works deal with models which are grounded on
logic - thus their formality - but they have a low level of abstraction and are
not practical from the point of view of the business. Therefore, our aim was to
find a way to reason with the models in the BAUML framework.

We have contributed two different ways to do so. First of all, we have
shown in Chapter 5 how to translate a BAUML model into a DCDS (Data-
centric Dynamic System) in order to apply model checking techniques to
ensure its semantic correctness. This shows that our approach is compatible
with external frameworks.

However, as we have seen, the main drawback of DCDSs is that they have
been proposed at a theoretical level and there is no tool that can perform the
tests, although work has begun on that front.

Therefore, the second contribution of this part is proving the feasibility of
our approach. As explained in Chapter 6, we have implemented a prototype
tool, AuRUS-BAUML, which is able to translate a BAUML model into a first-
order logic schema. AuRUS-BAUML then connects seamlessly to another
tool, SVTe. Given a property or goal and a schema defined in logic, SVTe can
tell us whether the goal can be achieved with the schema. This result is then
presented to the user through AuRUS-BAUML. To make life easier for the user,
he can define the BAUML models using ArgoUML, which can be exported as
an XMI and then provided as input to AuRUS-BAUML.

Following this workflow, the user can answer several questions which deal
with the semantic correctness of the initial model. This includes ensuring that
the model fulfills the business requirements. We also provide a set of tests

166 Chapter 8. Conclusions

that can be generated automatically from the models as a way to illustrate the
potential of our proposal. We have also presented in Chapter 6 the translation
process and the algorithms required to be able to obtain the logic translation
of our BAUML models.

The last contribution in this field deals with the complexity of reasoning
and is described in Chapter 7. We have proven that determining whether a
BAUML model fulfills a certain property is undecidable. In order to guarantee
decidability, the following conditions have to be met: the artifact should be
associated to a limited number of objects, two artifacts can only share read-only
objects, the OCL expressions must be navigational starting from the artifact
instance which is manipulated, and the associations between two classes are
not navigated back and forth.

If all these conditions are met, it is not necessary to bound the number of
active artifact instances. On the other hand, if the two artifacts share read-
write objects, in order to guarantee decidability we need to bound the number
of active artifact instances.

8.2 Further Research

The research presented in this thesis can be further extended in several ways.
We have applied the BAUML framework to various examples and a case study,
and the next step would be to apply it to the corporate world. As we have
mentioned, Léelo [82], a Spanish company, is interested in our approach to
artifact-centric business process modeling, and on adapting our methodology
to their needs. In fact, we have already begun work on that front.

In terms of modeling, incorporating other modeling notations such as
BPMN for the associations or an ER diagram to represent the business artifacts
would make our framework more flexible.

When it comes to reasoning with our BAUML models, we believe that there
are many potential research contributions to be made. To begin with, we could
deal with the simplifications we mentioned in Section 5.1.3 on page 81, e.g. by
allowing action nodes in the activity diagrams for reasoning or incorporating
subprocesses in the activity diagram. Although these simplifications do not
alter the result of the reasoning, they would make life easier for the modeler.

Secondly, in order to broaden the applicability of our reasoning approaches,
we could incorporate fork and join nodes in the translation process, in order
to consider parallelism. In addition, we could also consider more than one
artifact type for reasoning.

8.3. Impact of the Thesis 167

A further contribution would be to apply existing techniques to determine
the syntactical and structural correctness of the BAUML models given as input
before translating them into a DCDSs or into first-order logic for reasoning.

In terms of the tool itself, another possibility would be to optimize our tools
(both AuRUS-BAUML and SVTe) to make them more efficient, improve the
response time and to add compatibility with other modeling tools, other than
ArgoUML, to represent the diagrams. And, last but not least, AuRUS-BAUML
could be adapted to work with other modeling notations, as we mentioned
previously.

Finally, when it comes to the study on decidability, further research could
deal with the details on the interaction of read and write operations without
weakening decidability. Another interesting aspect to study would be trying
to control the exponentiality of data by partitioning it with the final goal of
studying the practical application of the verification techniques.

8.3 Impact of the Thesis

The relevance of the work presented in this thesis is justified by the scientific
publications that have been accepted in several international conferences and a
book chapter. Moreover, it has also generated an interest in the industry: Léelo
[82], a Spanish company based in Madrid, wished to adapt our methodology
to their needs.

In this section we present the titles, authors and abstracts of the publications
related to the thesis. It is divided into two subsections, one for each of the
main contributions of this thesis. Within each subsection, the publications are
listed in reverse chronological order.

8.3.1 Artifact-centric Business Process Modeling

Title: Specifying Artifact-Centric Business Process Models in UML
(ref. [48])

Authors: M. Estañol, A. Queralt, M.R. Sancho and E. Teniente
Published in: BMSD 2014 (Selected Papers), vol. 220 of LNBIP, Springer,

pp. 62-81
Year: 2015

– Continues in the next page

168 Chapter 8. Conclusions

Title: Specifying Artifact-Centric Business Process Models in
UML

– Continued from previous page

Abstract: In recent years, the artifact-centric approach to process
modeling has attracted a lot of attention. One of the re-
search lines in this area is finding a suitable way to rep-
resent the dimensions in this approach. Bearing this in
mind, this paper proposes a way to specify artifact-centric
business process models by means of well-known UML
diagrams, from a high-level of abstraction and with a
technology-independent perspective. UML is a graphical
language, widely used and with a precise semantics.

Title: Using UML to Specify Artifact-centric Business Process Models
(ref. [47])

Authors: M. Estañol, A. Queralt, M.R. Sancho and E. Teniente
Published in: BMSD 2014, SciTePress, pp. 84-93

Year: 2014
Abstract: Business process modeling using an artifact-centric ap-

proach has raised a significant interest over the last few
years. One of the research challenges in this area is look-
ing for different approaches to represent all the dimen-
sions in artifact-centric business process models. Bearing
this in mind, the present paper proposes how to specify
artifact-centric business process models by means of dia-
grams based on UML. The advantages of basing our work
on UML are many: it is a semi-formal language with a pre-
cise semantics; it is widely used and easy to understand;
and it provides an artifact-centric specification which in-
corporates also some aspects of process-awareness.

Title: Artifact-Centric Business Process Models in UML (ref. [46])

Authors: M. Estañol, A. Queralt, M.R. Sancho and E. Teniente
– Continues in the next page

8.3. Impact of the Thesis 169

Title: Artifact-Centric Business Process Models in UML
– Continued from previous page

Published in: BPM 2012 Workshops, vol. 132 of LNBIP, Springer, pp.
292-303

Year: 2013
Abstract: Business process modeling using an artifact-centric ap-

proach has raised a significant interest over the last few
years. This approach is usually stated in terms of the
BALSA framework which defines the four “dimensions”
of an artifact-centric business process model: Business Ar-
tifacts, Lifecycles, Services and Associations. One of the
research challenges in this area is looking for different dia-
grams to represent these dimensions. Bearing this in mind,
the present paper shows how all the elements in BALSA
can be represented by using the UML language. The ad-
vantages of using UML are many. First of all, it is a formal
language with a precise semantics. Secondly, it is widely
used and understandable by both business people and soft-
ware developers. And, last but not least, UML allows us to
provide an artifact-centric specification for BALSA which
incorporates also some aspects of process-awareness.

8.3.2 Reasoning on Artifact-centric Business Process Models

Title: Verification and Validation of UML Artifact-centric Business
Process Models (ref. [51])

Authors: M. Estañol, M.R. Sancho, E. Teniente
Published in: CAiSE 2015, vol. 9097 of LNCS, Springer, pp. 434-449

Year: 2015
– Continues in the next page

170 Chapter 8. Conclusions

Title: Verification and Validation of UML Artifact-centric Busi-
ness Process Models

– Continued from previous page

Abstract: This paper presents a way of checking the correctness of
artifact-centric business process models defined using the
BAUML framework. To ensure that these models are free
of errors, we propose an approach to verify (i.e. there are
no internal mistakes) and to validate them (i.e. the model
complies with the business requirements). This approach
is based on translating these models into logic and then
encoding the desirable properties as satisfiability problems
of derived predicates. In this way, we can then use a tool
to check if these properties are fulfilled.

Title: Verifiable UML Artifact-Centric Business Process Models (ref.
[28])

Authors: D. Calvanese, M. Montali, M. Estañol, E. Teniente
Published in: CIKM 2014, ACM, pp. 1289-1298

Year: 2014
Abstract: Artifact-centric business process models have gained in-

creasing momentum recently due to their ability to com-
bine structural (i.e., data related) with dynamical (i.e., pro-
cess related) aspects. In particular, two main lines of re-
search have been pursued so far: one tailored to business
artifact modeling languages and methodologies, the other
focused on the foundations for their formal verification. In
this paper, we merge these two lines of research, by show-
ing how recent theoretical decidability results for verifica-
tion can be fruitfully transferred to a concrete UML-based
modeling methodology. In particular, we identify addi-
tional steps in the methodology that, in significant cases,
guarantee the possibility of verifying the resulting models
against rich first-order temporal properties. Notably, our
results can be seamlessly transferred to different languages
for the specification of the artifact lifecycles.

8.3. Impact of the Thesis 171

Title: Reasoning on UML Data-Centric Business Process Models (ref.
[50])

Authors: M. Estañol, M.R. Sancho and E. Teniente
Published in: ICSOC 2013, vol. 8274 of LNCS, Springer, pp. 437-445

Year: 2013
Abstract: Verifying the correctness of data-centric business process

models is important to prevent errors from reaching the
service that is offered to the customer. Although the se-
mantic correctness of these models has been studied in de-
tail, existing works deal with models defined in low-level
languages (e.g. logic), which are complex and difficult to
understand. This paper provides a way to reason seman-
tically on data-centric business process models specified
from a high-level and technology-independent perspective
using UML.

References

[1] IEEE Standard for System and Software Verification and Validation. IEEE
Std. 1012-2012 (2012)

[2] Object Role Modeling: The official site for conceptual data modeling
(2015), http://www.orm.net/

[3] van der Aalst, W.M.P., Hee, K.M., ter Hofstede, A.H.M., Sidorova, N.,
Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow
nets: classification, decidability, and analysis. Formal Aspects of Com-
puting 23(3), 333–363 (2011)

[4] van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.): Business Process
Management, Models, Techniques, and Empirical Studies, LNCS, vol.
1806. Springer (2000)

[5] Aguilar-Savén, R.S.: Business process modelling: Review and frame-
work. International Journal of Production Economics 90(2), 129–149
(2004)

[6] April, J., Better, M., Glover, F., Kelly, J.P., Laguna, M.: Enhancing business
process management with simulation optimization. In: Perrone, L.F.,
Lawson, B., Liu, J., Wieland, F.P. (eds.) WSC 2006. pp. 642–649. WSC
(2006)

[7] ArgoUML: ArgoUML (2015), http://argouml.tigris.org/

[8] Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data
anomalies in process models. In: Rinderle-Ma, S., Sadiq, S.W., Leymann,
F. (eds.) Business Process Management Workshops. LNBIP, vol. 43, pp.
5–16. Springer (2009)

173

http://www.orm.net/
http://argouml.tigris.org/

174 References

[9] Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli,
P.: Foundations of relational artifacts verification. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 379–395.
Springer (2011)

[10] Bagheri Hariri, B., Calvanese, D., Giacomo, G.D., Deutsch, A., Montali,
M.: Verification of relational data-centric dynamic systems with external
services. CoRR abs/1203.0024 (2012)

[11] Bagheri Hariri, B., Calvanese, D., Giacomo, G.D., Deutsch, A., Montali,
M.: Verification of relational data-centric dynamic systems with external
services. In: Hull, R., Fan, W. (eds.) PODS. pp. 163–174. ACM (2013)

[12] Bagheri Hariri, B., et al.: Verification of description logic knowledge and
action bases. In: Raedt, L.D., et al. (eds.) ECAI. Frontiers in Artificial
Intelligence and Applications, vol. 242, pp. 103–108. IOS Press (2012)

[13] Bartsch, C., von Mevius, M., Oberweis, A.: Simulation of IT service pro-
cesses with petri-nets. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC
2008 Workshops, ICSOC 2008 Revised Selected Papers. LNCS, vol. 5472,
pp. 53–65. Springer (2008)

[14] Basu, S., et al. (eds.): Service-Oriented Computing - 11th International
Conference, ICSOC 2013, LNCS, vol. 8274. Springer (2013)

[15] Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed arti-
fact systems via data abstraction. In: Kappel, G., Maamar, Z., Nezhad,
H.R.M. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 142–156. Springer (2011)

[16] Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-based
artifact-centric systems through finite abstraction. In: Liu, C., Ludwig,
H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 17–31.
Springer (2012)

[17] Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.:
Artifact-centered operational modeling: lessons from customer engage-
ments. IBM Syst. J. 46(4), 703–721 (Oct 2007)

[18] Bhattacharya, K., Guthman, R., Lyman, K., Heath III, F.F., Kumaran,
S., Nandi, P., Wu, F., Athma, P., Freiberg, C., Johannsen, L., Staudt,
A.: A model-driven approach to industrializing discovery processes in
pharmaceutical research. IBM Syst. J. 44(1), 145–162 (Jan 2005)

References 175

[19] Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards for-
mal analysis of artifact-centric business process models. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304.
Springer (2007)

[20] Bhattacharya, K., Hull, R., Su, J.: A Data-Centric Design Methodology
for Business Processes. In: Handbook of Research on Business Process
Management, pp. 1–28 (2009)

[21] Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Engle-
wood Cliffs (1981)

[22] Böhmer, K., Rinderle-Ma, S.: A systematic literature review on process
model testing: Approaches, challenges, and research directions. CoRR
abs/1509.04076 (2015)

[23] Borrego, D., Gasca, R.M., López, M.T.G.: Automating correctness veri-
fication of artifact-centric business process models. Information & Soft-
ware Technology 62, 187–197 (2015)

[24] Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J.,
Ruiz Cortés, A.: Ralph: A graphical notation for resource assignments
in business processes. In: Zdravkovic et al. [135], pp. 53–68

[25] Cabanillas, C., Resinas, M., del-Río-Ortega, A., Ruiz Cortés, A.: Spec-
ification and automated design-time analysis of the business process
human resource perspective. Inf. Syst. 52, 55–82 (2015)

[26] Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts.
In: Leuschel, M., Wehrheim, H. (eds.) IFM. LNCS, vol. 5423, pp. 40–55.
Springer (2009)

[27] Calvanese, D., Giacomo, G.D., Lembo, D., Montali, M., Santoso, A.:
Ontology-based governance of data-aware processes. In: Krötzsch, M.,
Straccia, U. (eds.) RR. LNCS, vol. 7497, pp. 25–41. Springer (2012)

[28] Calvanese, D., Montali, M., Estañol, M., Teniente, E.: Verifiable UML
artifact-centric business process models. In: Li, J., Wang, X.S., Garo-
falakis, M.N., Soboroff, I., Suel, T., Wang, M. (eds.) CIKM 2014. pp.
1289–1298. ACM (2014)

176 References

[29] Calvanese, D., Montali, M., Estañol, M., Teniente, E.: Verifiable
UML artifact-centric business process models (extended version). CoRR
abs/1408.5094 (2014), http://arxiv.org/abs/1408.5094

[30] Calvanese, D., Montali, M., Patrizi, F., Rivkin, A.: Implementing data-
centric dynamic systems over a relational DBMS. In: Calì, A., Vidal, M.
(eds.) Proceedings of the 9th Alberto Mendelzon International Workshop
on Foundations of Data Management. CEUR Workshop Proceedings,
vol. 1378. CEUR-WS.org (2015)

[31] Cangialosi, P., Giacomo, G.D., Masellis, R.D., Rosati, R.: Conjunctive
artifact-centric services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato,
M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 318–333. Springer (2010)

[32] Chen, P.P.: The entity-relationship model - toward a unified view of
data. ACM Trans. Database Syst. 1(1), 9–36 (1976)

[33] Choi, Y., Zhao, J.L.: Decomposition-Based Verification of Cyclic Work-
flows. In: Peled, D., Tsay, Y.K. (eds.) ATVA 2005. LNCS, vol. 3707, pp.
84–98. Springer (2005)

[34] Choppy, C., Klai, K., Zidani, H.: Formal verification of UML state di-
agrams: a Petri net based approach. ACM SIGSOFT Soft. Eng. Notes
36(1), 1–8 (2011)

[35] Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM
35(9), 75–90 (Sep 1992)

[36] Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of
data-centric business processes. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 3–16. Springer (2011)

[37] Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data depen-
dencies and arithmetic. ACM Trans. Database Syst. 37(3), 22 (2012)

[38] Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incre-
mental and fixpoint semantics for business artifacts with Guard-Stage-
Milestone lifecycles. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 396–412. Springer (2011)

[39] Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremen-
tal and fixpoint semantics for business artifacts with Guard – Stage –

http://arxiv.org/abs/1408.5094

References 177

Milestone lifecycles. Information Systems 38(4), 561 – 584 (2013), special
section on BPM 2011 conference

[40] De Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative
process modeling in BPMN. In: Zdravkovic et al. [135], pp. 84–100

[41] Desel, J., Erwin, T.: Modeling, simulation and analysis of business pro-
cesses. In: van der Aalst et al. [4], pp. 129–141

[42] Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of
data-centric business processes. In: Fagin, R. (ed.) ICDT. ACM Interna-
tional Conference Proceeding Series, vol. 361, pp. 252–267. ACM (2009)

[43] van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification
of EPCs: Using reduction rules and Petri nets. In: Pastor, O., Falcão
e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 372–386. Springer
(2005)

[44] Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM
Trans. Softw. Eng. Methodol. 15(1), 1–38 (2006)

[45] Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: EU-Rent as an
artifact-centric business process model: Technical report (2012), avail-
able at: http://hdl.handle.net/2117/16928, Ref: ESSI-TR-12-3

[46] Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: Artifact-centric Busi-
ness Process Models in UML. In: La Rosa, M., Soffer, P. (eds.) Business
Process Management Workshops 2012. LNBIP, vol. 132, pp. 292–303.
Springer (2013)

[47] Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: Using UML to
specify artifact-centric business process models. In: Shishkov, B. (ed.)
BMSD 2014 : Proceedings of the Fourth International Symposium on
Business Modeling and Software Design. pp. 84–93. SciTePress (2014)

[48] Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: Specifying artifact-
centric business process models in UML. In: Shishkov, B. (ed.) BMSD
2014, Revised Selected Papers. LNBIP, vol. 220, pp. 62–81. Springer (2015)

[49] Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: Specifying artifact-
centric business process models in UML: technical report (2015), avail-
able at: http://hdl.handle.net/2117/28344, Ref:ESSI-TR-15-2

http://hdl.handle.net/2117/16928
http://hdl.handle.net/2117/28344

178 References

[50] Estañol, M., Sancho, M.R., Teniente, E.: Reasoning on UML data-centric
business process models. In: Basu et al. [14], pp. 437–445

[51] Estañol, M., Sancho, M., Teniente, E.: Verification and validation of UML
artifact-centric business process models. In: Zdravkovic et al. [135], pp.
434–449

[52] Fahland, D., Leoni, M.D., van Dongen, B.F., van der Aalst, W.M.P.: Be-
havioral conformance of artifact-centric process models. In: Abramow-
icz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 37–49. Springer (2011)

[53] Farré, C., Rull, G., Teniente, E., Urpí, T.: SVTe: a tool to validate database
schemas giving explanations. In: Giakoumakis, L., Kossmann, D. (eds.)
DBTest 2008. pp. 1–6. ACM (2008)

[54] Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-
based business processes. In: Fagin, R. (ed.) ICDT. ACM International
Conference Proceeding Series, vol. 361, pp. 225–238. ACM (2009)

[55] Gerede, C.E., Su, J.: Specification and verification of artifact behaviors
in business process models. In: Krämer, B.J., Lin, K.J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 181–192. Springer (2007)

[56] Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification
environment for validating UML and OCL. Sci. Comput. Program. 69(1-
3), 27–34 (2007)

[57] Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying GSM-based busi-
ness artifacts. In: Goble, C.A., Chen, P.P., Zhang, J. (eds.) 2012 IEEE 19th
International Conference on Web Services. pp. 25–32. IEEE Computer
Society (2012)

[58] Gonzalez, P., Griesmayer, A., Lomuscio, A.: Model checking GSM-based
multi-agent systems. In: Lomuscio, A., Nepal, S., Patrizi, F., Benatallah,
B., Brandic, I. (eds.) ICSOC 2013 Workshops. LNCS, vol. 8377, pp. 54–68.
Springer (2013)

[59] Halpin, T.: Conceptual Schema and Relational Database Design (2nd
Ed.). Prentice-Hall (1996)

[60] Heath, F.T., et al.: Barcelona: A design and runtime environment for
declarative artifact-centric BPM. In: Basu et al. [14], pp. 705–709

References 179

[61] Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information
systems research. MIS Quarterly 28(1), 75–105 (2004)

[62] Hoch, R., Kaindl, H., Popp, R., Ertl, D., Horacek, H.: Semantic service
specification for v&v of service composition and business processes. In:
Bui, T.X., Jr., R.H.S. (eds.) HICSS 2015. pp. 1370–1379. IEEE (2015)

[63] Hommes, B.J.: The Evaluation of Business Process Modeling Techniques.
Ph.D. thesis, Technische Universiteit Delft (2004)

[64] Hull, R.: Artifact-centric business process models: Brief survey of re-
search results and challenges. In: Meersman, R., Tari, Z. (eds.) OTM
2008. LNCS, vol. 5332, pp. 1152–1163. Springer (2008)

[65] Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S.,
Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculín, R.: In-
troducing the Guard-Stage-Milestone approach for specifying business
entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS,
vol. 6551, pp. 1–24. Springer (2011)

[66] Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M., Heath,
F.T., Hobson, S., Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya,
P.N., Vaculín, R.: Business artifacts with Guard-Stage-Milestone life-
cycles: managing artifact interactions with conditions and events. In:
Eyers, D.M., Etzion, O., Gal, A., Zdonik, S.B., Vincent, P. (eds.) DEBS.
pp. 51–62. ACM (2011)

[67] ISO: ISO/IEC 19505-2:2012 - OMG UML superstructure 2.4.1 (2012),
available at: http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=52854

[68] ISO: ISO/IEC 19507:2012 - OMG OCL version 2.3.1 (2012), avail-
able at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=57306

[69] ISO: ISO/IEC 19510:2013 Information technology – Object Management
Group Business Process Model and Notation (2013), http://www.iso.
org/iso/catalogue_detail.htm?csnumber=62652

[70] ISO: ISO/IEC 19793:2015 - information technology – open distributed
processing – use of UML for ODP system specifications (2015), avail-
able at: http://www.iso.org/iso/catalogue_detail.htm?csnumber=
68641

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52854
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52854
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57306
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57306
http://www.iso.org/iso/catalogue_detail.htm?csnumber=62652
http://www.iso.org/iso/catalogue_detail.htm?csnumber=62652
http://www.iso.org/iso/catalogue_detail.htm?csnumber=68641
http://www.iso.org/iso/catalogue_detail.htm?csnumber=68641

180 References

[71] Kardasis, P., Loucopoulos, P.: Expressing and organising business rules.
Information & Software Technology 46(11), 701–718 (2004)

[72] Kardasis, P., Loucopoulos, P.: A roadmap for the elicitation of business
rules in information systems projects. Business Proc. Manag. Journal
11(4), 316–348 (2005)

[73] Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On
enabling data-aware compliance checking of business process models.
In: Parsons, J., Saeki, M., Shoval, P., Woo, C.C., Wand, Y. (eds.) ER 2010.
LNCS, vol. 6412, pp. 332–346. Springer (2010)

[74] Künzle, V.: Object-Aware Process Management. Ph.D. thesis, Ulm Uni-
versity (2013)

[75] Kucukoguz, E., Su, J.: On lifecycle constraints of artifact-centric work-
flows. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551,
pp. 71–85. Springer (2011)

[76] Kumaran, S., Liu, R., Wu, F.Y.: On the duality of information-centric
and activity-centric models of business processes. In: Bellahsene, Z.,
Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 32–47. Springer
(2008)

[77] Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., Das, R.: ADoc-oriented
programming. In: SAINT. pp. 334–343. IEEE Computer Society (2003)

[78] Künzle, V., Reichert, M.: Philharmonicflows: towards a framework
for object-aware process management. Journal of Software Maintenance
23(4), 205–244 (2011)

[79] Küster, J.M., Ryndina, K., Gall, H.C.: Generation of business process
models for object life cycle compliance. In: Alonso, G., Dadam, P., Rose-
mann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 165–181. Springer (2007)

[80] Lankhorst, M.M., Proper, H.A., Jonkers, H.: The architecture of the
archimate language. In: Halpin, T.A., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009.
LNBIP, vol. 29, pp. 367–380. Springer (2009)

[81] Larman, C.: Applying UML and Patterns. Prentice Hall, 2nd edition
edn. (2002)

References 181

[82] Léelo: Léelo procesos documentales (2016), http://leelo.es/

[83] Lin, H., Zhao, Z., Li, H., Chen, Z.: A novel graph reduction algorithm to
identify structural conflicts. In: HICSS. p. 289. IEEE Computer Society
(2002)

[84] Linington, P.F., Milosevic, Z., Tanaka, A., Vallecillo, A.: The PhoneMob
system: RM-ODP using ODP4UML (2011), available at: http://www.
iso.org/iso/catalogue_detail.htm?csnumber=68641

[85] Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and
behavior using business artifacts. In: Krogstie, J., Opdahl, A., Sindre, G.
(eds.) CAiSE 2007. LNCS, vol. 4495, pp. 324–339. Springer (2007)

[86] Lohmann, N.: Compliance by design for artifact-centric business pro-
cesses. Inf. Syst. 38(4), 606–618 (2013)

[87] Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: Maglio, P.P.,
Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470,
pp. 32–46. Springer (2010)

[88] Lucas, F.J., Molina, F., Álvarez, J.A.T.: A systematic review of UML
model consistency management. Information & Software Technology
51(12), 1631–1645 (2009)

[89] Ly, L.T., Rinderle, S., Dadam, P.: Semantic correctness in adaptive pro-
cess management systems. In: Dustdar, S., Fiadeiro, J., Sheth, A. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 193–208. Springer (2006)

[90] March, S.T., Smith, G.F.: Design and natural science research on infor-
mation technology. Decis. Support Syst. 15(4), 251–266 (Dec 1995)

[91] Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P.,
Neumann, G.: Detection and prediction of errors in EPCs of the SAP
reference model. Data Knowl. Eng. 64(1), 312–329 (2008)

[92] Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting
complex data dependencies in business processes. In: Daniel, F., Wang,
J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer
(2013)

[93] Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall
(1967)

http://leelo.es/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=68641
http://www.iso.org/iso/catalogue_detail.htm?csnumber=68641

182 References

[94] Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational
specification. IBM Syst. J. 42(3), 428–445 (2003)

[95] Moreno-Montes de Oca, I., Snoeck, M., Reijers, H.A., Rodríguez-Morffi,
A.: A systematic literature review of studies on business process mod-
eling quality. Information & Software Technology 58, 187–205 (2015)

[96] Olivé, A.: Conceptual Modeling of Information Systems. Springer, Berlin
(2007)

[97] OMG: BPMN 2.0 by example (2010), http://www.omg.org/spec/BPMN/
20100601/10-06-02.pdf

[98] OMG: Business Process Model and Notation (BPMN) 2.0 (2013), http:
//www.omg.org/spec/BPMN/2.0.2/PDF/

[99] Oriol, X.: Verificació i validació d’esquemes conceptuals UML/OCL amb
operacions. Master’s thesis, Universitat Politècnica de Catalunya (2012)

[100] Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-method ap-
proach for information systems modeling: from object-oriented con-
ceptual modeling to automated programming. Inf. Syst. 26(7), 507–534
(2001)

[101] Popova, V., Dumas, M.: Discovering unbounded synchronization con-
ditions in artifact-centric process models. In: Lohmann, N., Song, M.,
Wohed, P. (eds.) BPM 2013 International Workshops, Revised Papers.
LNBIP, vol. 171, pp. 28–40. Springer (2013)

[102] Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J.
Cooperative Inf. Syst. 24(1) (2015)

[103] Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite
reasoning on UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22
(2012)

[104] Queralt, A., Teniente, E.: Specifying the semantics of operation contracts
in conceptual modeling. In: Journal on Data Semantics VII, LNCS, vol.
4244, pp. 33–56. Springer (2006)

[105] Queralt, A., Teniente, E.: Reasoning on UML conceptual schemas with
operations. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
pp. 47–62. LNCS, Springer (2009)

http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
http://www.omg.org/spec/BPMN/2.0.2/PDF/
http://www.omg.org/spec/BPMN/2.0.2/PDF/

References 183

[106] Queralt, A., Teniente, E.: Verification and validation of UML conceptual
schemas with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2),
13 (2012)

[107] Ralyté, J., Khadraoui, A., Léonard, M.: Designing the shift from infor-
mation systems to information services systems. Business & Information
Systems Engineering 57(1), 37–49 (2015)

[108] Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Gener-
ating business process models from object behavior models. IS Manage-
ment 25(4), 319–331 (2008)

[109] Reggio, G., Leotta, M., Ricca, F.: "Precise is better than light" a document
analysis study about quality of business process models. In: EmpiRE
2011. pp. 61–68. IEEE (2011)

[110] Rinderle-Ma, S.: Data flow correctness in adaptive workflow systems.
EMISA Forum 29(2), 25–35 (2009)

[111] Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering
simulation models. Inf. Syst. 34(3), 305–327 (2009)

[112] Ruiz, M., Costal, D., España, S., Franch, X., Pastor, O.: Integrating the
goal and business process perspectives in information system analysis.
In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y.,
Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 332–
346. Springer (2014)

[113] Ruiz, M., Costal, D., España, S., Franch, X., Pastor, O.: Gobis: An inte-
grated framework to analyse the goal and business process perspectives
in information systems. Inf. Syst. 53, 330–345 (2015)

[114] Rull, G., Farré, C., Queralt, A., Teniente, E., Urpí, T.: AuRUS: explaining
the validation of UML/OCL conceptual schemas. Software & Systems
Modeling 14(2), 953–980 (2015)

[115] Rull, G., Farré, C., Teniente, E., Urpí, T.: Providing explanations for
database schema validation. In: Bhowmick, S.S., Küng, J., Wagner, R.
(eds.) DEXA. LNCS, vol. 5181, pp. 660–667. Springer (2008)

[116] Sadiq, W., Orlowska, M.E.: Analyzing process models using graph re-
duction techniques. Inf. Syst. 25(2), 117–134 (2000)

184 References

[117] Scheer, A., Nüttgens, M.: ARIS architecture and reference models for
business process management. In: van der Aalst et al. [4], pp. 376–389

[118] Serral, E., De Smedt, J., Snoeck, M., Vanthienen, J.: Context-adaptive
petri nets: Supporting adaptation for the execution context. Expert Syst.
Appl. 42(23), 9307–9317 (2015)

[119] Sidorova, N., Stahl, C., Trcka, N.: Soundness verification for concep-
tual workflow nets with data: Early detection of errors with the most
precision possible. Inf. Syst. 36(7), 1026–1043 (2011)

[120] Snoeck, M., Michiels, C., Dedene, G.: Consistency by construction: The
case of MERODE. In: Jeusfeld, M.A., Pastor, O. (eds.) Conceptual Mod-
eling for Novel Application Domains, ER 2003 Workshops ECOMO,
IWCMQ, AOIS, and XSDM. LNCS, vol. 2814, pp. 105–117. Springer
(2003)

[121] Software AG: ARIS business process analysis | Software AG,
http://www.softwareag.com/corporate/products/aris_alfabet/
bpa/products/

[122] Solomakhin, D., Montali, M., Tessaris, S., Masellis, R.D.: Verification
of artifact-centric systems: Decidability and modeling issues. In: Basu
et al. [14], pp. 252–266

[123] Störrle, H.: Semantics and verification of data flow in UML 2.0 activities.
Electr. Notes Theor. Comput. Sci. 127(4), 35–52 (2005)

[124] Straeten, R.V.D., Simmonds, J., Mens, T.: Detecting inconsistencies be-
tween UML models using Description Logic. In: Calvanese, D., et al.
(eds.) Description Logics. CEUR Workshop Proceedings, vol. 81. CEUR-
WS.org (2003)

[125] Szwed, P.: Verification of archimate behavioral elements by model check-
ing. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp.
132–144. Springer (2015)

[126] Teorey, T., Lightstone, S., Nadeau, T.: Database Modeling and Design.
Morgan Kaufmann, San Francisco, fourth edn. (2006)

[127] Trcka, N., van der Aalst, W.M.P., Sidorova, N.: Data-flow anti-patterns:
Discovering data-flow errors in workflows. In: van Eck, P., Gordijn, J.,
Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 425–439 (2009)

http://www.softwareag.com/corporate/products/aris_alfabet/bpa/products/
http://www.softwareag.com/corporate/products/aris_alfabet/bpa/products/

References 185

[128] Universitat Politècnica de Catalunya & Universitat Oberta de Catalunya:
EinaGMC, http://guifre.lsi.upc.edu/eina_GMC/

[129] Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2007)

[130] Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.:
Formal specification and testing of model transformations. In: Bernardo,
M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. Advanced Lectures.
LNCS, vol. 7320, pp. 399–437. Springer (2012)

[131] Visual Paradigm International: Visual Paradigm, http://www.
visual-paradigm.com/

[132] Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the veri-
fication of semantic business process models. Distributed and Parallel
Databases 27(3), 271–343 (2010)

[133] Weske, M.: Business Process Management: Concepts, Languages, Ar-
chitectures. Springer, Berlin Heidelberg (2007)

[134] Yourdon, E.: Just enough structured analysis (2006), available at: http:
//www.yourdon.com/jesa/JESA.pdf

[135] Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.): Advanced Infor-
mation Systems Engineering - 27th International Conference, CAiSE
2015, Stockholm, Sweden, June 8-12, 2015, Proceedings, LNCS, vol. 9097.
Springer (2015)

http://guifre.lsi.upc.edu/eina_GMC/
http://www.visual-paradigm.com/
http://www.visual-paradigm.com/
http://www.yourdon.com/jesa/JESA.pdf
http://www.yourdon.com/jesa/JESA.pdf

Appendix A

Bicing: Full Example Specification

This appendix presents the full specification of our Bicing example, introduced
in Chapter 3 in UML and OCL. The first part presents the example with one
artifact (Section 3.1); the second part shows the specification for the example
with two artifacts (Section 3.3).

For easier readability and reference, we include again the diagrams which
appeared in Chapter 3.

A.1 One Artifact

A.1.1 Class Diagram

Figure A.1 shows its UML class diagram with the corresponding textual con-
straints stated in natural language. Bicycle is the only business artifact since
we wish to track in the system the bicycle’s evolution. A Bicycle may be in
state Available, InUse or Unusable (we shortened the names for convenience;
they should be called AvailableBicycle, etc.). The rest of the classes correspond
to objects and specify the data required to rent a bicycle.

187

188 Appendix A. Bicing: Full Example Specification

 id : String
 inServiceSince : Date

<<artifact>>
Bicycle

 id : String
 name : String
 creditCard : Natural
 validUntil : Date

User

 number : Natural

AnchorPoint

 startTime : DateTime

BicycleRental

 expectedReturn : DateTime

InUse

 unsusableSince : Date

Unusable

 date : Date

Blacklisted

 lastReturn : Date [0..1]

Available

 id : Natural

Station

BicycleState

0..1

1

1

1..*
belongs to

1

0..1 0..1

1

{xor}unusable bike is in

{disjoint, complete}

is in

1. Bicycles, Stations and Users are identified by their id:
context Bicycle inv: Bicycle . allInstances ()−>isUnique(id)
context User inv: User.allInstances ()−>isUnique(id)
context Station inv: Station . allInstances ()−>isUnique(id)

2. AnchorPoint is identified by its number and Station:
context Station inv: self .anchorPoint−>isUnique(number)

3. inServiceSince must be earlier or equal to lastReturn, startTime, and date in Unusable:
context Available inv: self . lastReturn >= self . inServiceSince
context InUse inv: self .expectedReturn >= self.inServiceSince
context Unusable inv: self .unusableSince >= self.inServiceSince

4. expectedReturn must be later than startTime:
context BicycleRental inv: self .startTime < self . inUse.expectedReturn

5. The startTime of a BicycleRental must be within the user’s validity period validUntil:
context BicycleRental inv: self .startTime <= self .user.validUntil

Figure A.1: Class diagram of our example with the corresponding integrity
constraints.

A.1. One Artifact 189

A.1.2 State Machine Diagram

Figure A.2 shows the lifecycle of the artifact Bicycle. When a Bicycle is registered
it is Available. When a User picks it up to rent it, he may return it to its anchor
point if it is not in good shape and the bicycle is Unusable. Otherwise, it is
InUse. When the user returns the bicycle, it is Available again. An Unusuable
bicycle may be repaired, so that it is again Available. Otherwise, it is destroyed.

Unusable

Available InUseReturn Bicycle

Repair Bycicle [fail]

Repair Bicycle [success]

Pick Up Bicycle [fail]

Pick Up Bicycle [success]

Register New Bicycle

Figure A.2: State diagram of Bicycle.

A.1.3 Activity Diagrams & Operation Contracts

Register New Bicycle

Register New Bicycle

Create New Bicycle Assign to
AnchorPoint

Figure A.3: Activity diagram of Register New Bicycle

operat ion createNewBicycle () : B i c y c l e
pre : −
post : B i c y c l e . a l l I n s t a n c e s ()−> e x i s t s (b | b . oclIsNew () and

b . i n S e r v i c e S i n c e=today () and b . oc l I sTypeof (Avai lable) and r e s u l t=b)

operat ion assignToAnchorPoint (b : B icyc le , ap : AnchorPoint)
pre :−
post : ap . a v a i l a b l e = b . oclAsType (Avai lable)

190 Appendix A. Bicing: Full Example Specification

Pick Up Bicycle

Pick Up Bicycle

Bicycle <<material>>
Bicycle

BicycleRental

Request Bicycle Get Bicycle

Confirm
Return

Confirm Pick-Up

Return to
Anchor Point

<<Participant>>

<<Participant>>

<<fail>>

[bad shape]

[ok]

<<succeed>>

Figure A.4: Activity diagram for Pick Up Bicycle

operat ion r e q u e s t B i c y c l e (b : B i c y c l e)
pre : −
post : b . oclIsTypeOf (InUse) and not b . oclIsTypeOf (Avai lable) and

b . oclAsType (InUse) . expectedReturn = now () + hour (3)

operat ion confirmPickUp (b : B icyc le , u : User)
pre : −
post : B i c y c l e R e n t a l . a l l I n s t a n c e s ()−> e x i s t s (x | x . oclIsNew () and x . user=u and

x . inUse = b . oclAsType (InUse) and x . s tar tTime = now ())

operat ion confirmReturn (b : B icyc le , ap : AnchorPoint)
pre : −
post : not b . oclIsTypeOf (InUse) and b . oclIsTypeOf (Unusable) and

b . oclAsType (Unusable) . anchorPoint=ap and
b . oclAsType (Unusable) . unusableSince = today ()

Return Bicycle

Register New Bicycle

Return Bicycle

Repair Bicycle

Pick Up Bicycle

Recover Bicycle

Blacklist User

Register New User

Unblock User

Delete User

<<material>>
Place Bicycle in

Anchor Point

Confirm Bicycle
Return

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

Assign to
AnchorPoint

Create New Bicycle

Request Bicycle
<<material>>
Get Bicycle

Confirm
Return

<<material>>
Return to Anchor Point

<<material>>
Bring Bicycle to Station

Mark as
Unusuable

Mark Bicycle
as Lost

Mark User as
Blacklisted

Confirm
Pick-Up

Create New User

<<material>>
Pay Fine

Change User to Idle
<<material>>

Revise User History

Obain User Info
and Delete

[unforgivable]
<<fail>>

<<succeed>>[forgivable]

<<fail>>

[impossible to repair]

<<succeed>>
[repaired]

<<fail>>

[bad shape]

[ok] <<succeed>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.5: Activity diagram for Return Bicycle

A.2. Two Artifacts 191

operat ion conf irmBicycleReturn (b : B icyc le , ap : AnchorPoint)
pre : −
post : not b . oclIsTypeOf (InUse) and b . oclIsTypeOf (Avai lable) and

b . oclAsType (Avai lable) . anchorPoint = ap

Repair Bicycle

Repair Bicycle

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

<<fail>>

[impossible to repair]

<<succeed>>[repaired]

Figure A.6: Activity diagram for Repair Bicycle

operat ion markBicycleAsAvailable (b : B icyc le , ap : AnchorPoint)
pre : −
post : b . oclIsTypeOf (Avai lable) and b . oclAsType (Avai lable) . anchorPoint=ap and not

b . oclIsTypeOf (Unusable)

operat ion d e l e t e B i c y c l e (b : B i c y c l e)
pre : −
post : B i c y c l e . a l l I n s t a n c e s ()−>excludes (b)

A.2 Two Artifacts

This section presents the full specification for the Bicing example with two
artifacts. Note that the diagrams and/or operation contracts which do not
change from the example with one artifact are not included.

192 Appendix A. Bicing: Full Example Specification

A.2.1 Class Diagram

 id : String
 inServiceSince : Date

<<artifact>>
Bicycle

 id : String
 name : String
 email : String
 dateOfBirth : Date
 creditCard : Natural
 validUntil : Date

<<artifact>>
User

 number : Natural

AnchorPoint

 startTime : DateTime

BicycleRental

 expectedReturn : DateTime

InUse

 unsusableSince : Date

Unusable

 lostDate : Date

Lost

 date : Date

Blacklisted

 lastReturn : Date [0..1]

Available

 id : String
 address : String

Station

 lastRental : Date [0..1]

Idle Active

BicycleState

0..1

0..2

1

0..3

responsible

1..*

1

0..1

11

0..1 1..3

0..1

{xor}

is still using

{disjoint,complete}

has lost

belongs to

{xor}

{disjoint, complete}

has

UserState

unusable bike is in is in

1. Bicycles, Stations and Users are identified by their id:
context Bicycle inv: Bicycle . allInstances ()−>isUnique(id)
context User inv: User.allInstances ()−>isUnique(id)
context Station inv: Station . allInstances ()−>isUnique(id)

2. AnchorPoint is identified by its number and Station:
context Station inv: self .anchorPoint−>isUnique(number)

3. inServiceSince must be earlier or equal to lastReturn, startTime, and date in Unusable:
context Available inv: self . lastReturn >= self . inServiceSince
context InUse inv: self .expectedReturn >= self.inServiceSince
context Unusable inv: self .unusableSince >= self.inServiceSince

4. expectedReturn must be later than startTime:
context BicycleRental inv: self .startTime < self . inUse.expectedReturn

5. The startTime of a BicycleRental must be within the user’s validity period validUntil:
context BicycleRental inv: self .startTime <= self . active .validUntil

6. A User must be at least 18 years old:
context User inv: today() − self .dateOfBirth >= year(18)

Figure A.7: Class diagram showing the artifacts and objects in Bicing.

A.2. Two Artifacts 193

A.2.2 State Machine Diagram

Unusable

Available

Lost

InUse

Recover Bicycle

notReturned / Blacklist User

Return Bicycle

Repair Bycicle [fail]

Repair Bicycle [success]

Pick Up Bicycle [fail]

Pick Up Bicycle [success]
Register New Bicycle

Definitions:

• notReturned: after (day(3))

Figure A.8: State machine diagram showing the evolution of the artifact Bicycle.

Blacklisted Active

Idle

missedReturn / Blacklist User

Recover Bicycle

[#bicycles = 0] Unblock User [fai]

Return Bicycle [#bicycles > 1] Return Bicycle

Pick Up Bicycle

[#bicycles = 1] Return Bicycle

Delete User

[#bicycles = 0] Unblock User [success]

missedReturn / Blacklist User

Pick Up Bicycle [success]

Register New User

Definitions:

• missedReturn: after (day(3))

• #bicycles refers to the number of bicycles the user has:
For source state Available: self .oclAsType(Active).inUse−>size() For source state Black-
listed: self .oclAsType(Blacklisted).inUse−>size()

Figure A.9: State machine diagram showing the evolution of the artifact User.

194 Appendix A. Bicing: Full Example Specification

A.2.3 Activity Diagrams & Operation Contracts

Pick Up Bicycle

Listing A.1: Code for task Confirm Pick Up
operat ion confirmPickUp (b : B icyc le , u : User)
pre : −
post : B i c y c l e R e n t a l . a l l I n s t a n c e s ()−> e x i s t s (br | br . oclIsNew () and

u . oclIsTypeOf (Active) and br . a c t i v e=u . oclAsType (Active) and not
u . oclIsTypeOf (I d l e) and br . s tar tTime=now () and br . inUse =
b . oclAsType (InUse))

Return Bicycle

Listing A.2: Code for task Confirm Bicycle Return
operat ion conf irmBicycleReturn (b : B icyc le , ap : AnchorPoint)
pre : −
post : not b . oclIsTypeOf (InUse) and b . oclIsTypeOf (Avai lable) and

b . oclAsType (Avai lable) . l a s t R e t u r n = today () and
b . oclAsType (Avai lable) . anchorPoint = ap and

(u . oclIsTypeOf (Active) and u . oclAsType (Active) . inUse@pre−>s i z e () >1 implies
u . oclIsTypeOf (I d l e) and u . oclAsType (I d l e) . l a s t R e n t a l=today ())

Recover Bicycle

Register New Bicycle

Return Bicycle

Repair Bicycle

Pick Up Bicycle

Recover Bicycle

Blacklist User

Register New User

Unblock User

Delete User

<<material>>
Place Bicycle in

Anchor Point

Confirm Bicycle
Return

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

Assign to
AnchorPoint

Create New Bicycle

Request Bicycle
<<material>>
Get Bicycle

Confirm
Return

<<material>>
Return to Anchor Point

<<material>>
Bring Bicycle to Station

Mark as
Unusuable

Mark Bicycle
as Lost

Mark User as
Blacklisted

Confirm
Pick-Up

Create New User

<<material>>
Pay Fine

Change User to Idle
<<material>>

Revise User History

Obain User Info
and Delete

[unforgivable]
<<fail>>

<<succeed>>[forgivable]

<<fail>>

[impossible to repair]

<<succeed>>
[repaired]

<<fail>>

[bad shape]

[ok] <<succeed>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.10: Activity diagram for Recover Bicycle

Listing A.3: Code for task Mark as Unusable
operat ion markAsUnusable (b : B icyc le , ap : AnchorPoint)
pre : −
post : not b . oclIsTypeOf (Lost) and b . oclIsTypeOf (Unusable) and

b . oclAsType (Unusable) . anchorPoint = ap and
b . oclAsType (Unusable) . unusableSince = today ()

A.2. Two Artifacts 195

Register New User

Create New User

Figure A.11: Activity diagram for Register New User

Register New User

Listing A.4: Code for task RegisterNewUser
operat ion registerNewUser (uId : String , uName : String , uMail : String , b i r t h : Date ,

card : Natural , v a l i d i t y : Date)
pre : −
post : User . a l l I n s t a n c e s ()−> e x i s t s (u | u . oclIsNew () and u . id=uId and u . name=uName

and u . email=uMail and u . dateOfBir th = b i r t h and u . credi tCard=card and
u . v a l i d U n t i l = v a l i d i t y and u . oclIsTypeOf (I d l e))

Delete User

Delete User

Obain User Info
and Delete

Figure A.12: Activity diagram for Delete User

Listing A.5: Code for task DeleteUser
operat ion deleteUser (u : User)
pre : −
post : User . a l l I n s t a n c e s ()−>excludes (u)

Unblock User

Listing A.6: Code for task Change User to Idle
operat ion changeUserToIdle (u : User)
pre : −
post : not u . oclIsTypeOf (B l a c k l i s t e d) and u . oclIsTypeOf (I d l e)

196 Appendix A. Bicing: Full Example Specification

Register New Bicycle

Return Bicycle

Repair Bicycle

Pick Up Bicycle

Recover Bicycle

Blacklist User

Register New User

Unblock User

Delete User

<<material>>
Place Bicycle in

Anchor Point

Confirm Bicycle
Return

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

Assign to
AnchorPoint

Create New Bicycle

Request Bicycle
<<material>>
Get Bicycle

Confirm
Return

<<material>>
Return to Anchor Point

<<material>>
Bring Bicycle to Warehouse

Mark as
Unusuable

Mark Bicycle
as Lost

Mark User as
Blacklisted

Confirm
Pick-Up

Create New User

<<material>>
Pay Fine

Change User to Idle
<<material>>

Revise User History

Obain User Info
and Delete

[unforgivable]
<<fail>>

<<succeed>>[forgivable]

<<fail>>

[impossible to repair]

<<succeed>>
[repaired]

<<fail>>

[bad shape]

[ok] <<succeed>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure A.13: Activity diagram for Unblock User

Appendix B

Translation of Bicing into a DCDS

This appendix contains the translation into a DCDS of the Bicing example
with one artifact, first introduced in section 3.1. The translation has been done
following the process described in Chapter 5.

B.1 Data dimension

Figure B.1 shows the database schema required to store the information, al-
though it is missing the tables that are used to store the data when tasks
required to be translated into two different actions.

Notice also that we omitted the dates.

B.2 Condition-Action Rules

This section shows the condition-action rules that result from the translation
of the Bicing example.

Lifecycle

These are the condition-action rules that are obtained from the state machine
diagram.

197

198 Appendix B. Translation of Bicing into a DCDS

Bicycle

PK id

Available

PK,FK1 id

Station

PK id

BicycleRental

PK,FK2 userId
PK bikeId

Blacklisted

PK,FK1 id

Unusable

PK,FK1 id

PickingUpBicycle

PK,FK1 id

 lastTask

RepairingBicycle

PK,FK1 id

 lastTask

ReturningBicycle

PK,FK1 id

 lastTask

RegisteringNewBicycle

PK id

 lastTask

BicycleStatus

PK,FK1 id

 state
 transition

AnchorPoint

PK number
PK,FK1 station

InUse

PK,FK1 id

User

PK id

AvailableIsIn

PK,FK1 id

FK2 apNumber
FK2 apStation

UnusableIsIn

PK,FK1 id

FK2 apNumber
FK2 apStation

Figure B.1: Database schema containing the tables to store the information.
We have not included tables Busy, aux nor the ones required for the splitting
of the tasks, to keep it clearer.

¬Busy(id′) 7→ RegisterNewBicycle()
¬Busy(id′) ∧ BicycleStatus(id, ‘Available′, ‘none′) 7→ PickUpBicycle(id)
¬Busy(id′) ∧ BicycleStatus(id, ‘InUse′, ‘none′) 7→ ReturnBicycle(id)

¬Busy(id′) ∧ BicycleStatus(id, ‘Unusable′, ‘none′) 7→ RepairBicycle(id)

Associations

This subsection shows the condition-action rules that result from the transla-
tion of the activity diagram and the tasks/operation contracts.

B.2. Condition-Action Rules 199

RegisteringNewBicycle(id, ‘none′) ∧ ¬Bicycle(id) 7→ CreateNewBicycle(id)
RegisteringNewBicycle(id, ‘CreateNewBicycle′) 7→ AssignToAnchorPoint(id)

PickingUpBicycle(id, ‘none′) 7→ RequestBicycle(id)
PickingUpBicycle(id, ‘RequestBicycle′) 7→ Con f irmPickUp1(id)

PickingUpBicycle(id, ‘Con f irmPickUp1′) 7→ Con f irmPickUp2(id)
PickingUpBicycle(id, ‘RequestBicycle′) 7→ Con f irmReturn(id)

ReturningBicycle(id, ‘none′) 7→ Con f irmBicycleReturn(id)

RepairingBicycle(id, ‘none′) 7→MarkBicycleAsAvailable(id)
RepairingBicycle(id, ‘none′) 7→ DeleteBicycle(id)

B.2.1 Actions

This section shows the details of the actions of the DCDS. We begin by looking
at the actions from the state machine diagram, and afterwards we present the
actions that correspond to the tasks.

Lifecycle

This first subsection shows the actions resulting from the translation of the
state machine diagram, which are in charge of making explicit the implicit
connection between the state machine and activity diagrams.

RegisterNewBicycle()

true RegisteringNewBicycle(getBicycleId(), ‘none’)
true Busy(getBicycleId())

PickUpBicycle(id)

200 Appendix B. Translation of Bicing into a DCDS

true BicycleStatus(id, ‘Available’, ‘PickingUp’)
true PickingUpBicycle(id, ‘none’)
true Busy(id)

ReturnBicycle(id)

true BicycleStatus(id, ‘InUse’, ‘Returning’)
true ReturningBicycle(id, ‘none’)
true Busy(id)

RepairBicycle(id)

true BicycleStatus(id, ‘Unusable’, ‘Repairing’)
true RepairingBicycle(id, ‘none′)
true Busy(id)

Services / Tasks

This section presents the translation of the tasks in the activity diagrams into
DCDS actions.

Register New Bicycle

CreateNewBicycle(id):

true Bicycle(id)
true Available(id)
true RegisteringNewBicycle(id, ‘RegisterNewBic’)

AssignToAnchorPoint(id):

true AvailableIsIn(id, getAPNr(), getStId())
true BicycleStatus(id, ‘Available’, ‘none’)

BicycleStatus(id′, x, y) ∧ id , id′ BicycleStatus(id′, x, y)
RegisteringNewBicycle(id′, x) ∧ id , id′ RegisteringNewBicycle(id′, x)

B.2. Condition-Action Rules 201

PickUpBicycle

RequestBicycle(id):

true InUse(id)
Available(id′) ∧ id , id′ Available(id′)

AvailableIsIn(id′, apNr, apSt) ∧ id , id′ AvailableIsIn(id′, apNr, apSt)
PickingUpBicycle(id, ‘none’) PickingUpBicycle(id, ‘RequestBicycle’)

ConfirmPickUp1(id):

true OutCon f irmPickUp1(id, getUserID())
true PickingUpBicycle(id, ‘Con f irmPickUp1’)

PickingUpBicycle(id′, x) ∧ id , id′ PickingUpBicycle(id′, x)

ConfirmPickUp2(id):

OutCon f irmPickUp1(id,uid) BicycleRental(id,uid)
true BicycleStatus(id, ‘InUse’, ‘none’)

BicycleStatus(id′, x, y) ∧ id , id′ BicycleStatus(id′, x, y)
PickingUpBicycle(id′, x) ∧ id , id′ PickingUpBicycle(id′, x)

ConfirmReturn(id):

true UnusableIsIn(id, getAPNr(), getStId())
true BicycleStatus(id, ‘Unusable’, ‘none’)

BicycleStatus(id′, x, y) ∧ id , id′ BicycleStatus(id′, x, y)
PickingUpBicycle(id′, x) ∧ id , id′ PickingUpBicycle(id′, x)

Return Bicycle

202 Appendix B. Translation of Bicing into a DCDS

ConfirmBicycleReturn(id):

true Available(id)
InUse(id′) ∧ id′ , id InUse(id′)

true AvailableIsIn(id, getAPNr(), getStId())
true BicycleStatus(id, ‘Available’, ‘none’)

BicycleStatus(id′, x, y) ∧ id , id′ BicycleStatus(id′, x, y)
ReturningBicycle(id′, x) ∧ id , id′ ReturningBicycle(id′, x)

Repair Bicycle

MarkBicycleAsAvailable(id):

true Available(id)
Unusable(id′) ∧ id , id′ Unusable(id′)

true BicycleStatus(id, ‘Available’, ‘none’)
BicycleStatus(id′, x, y) ∧ id , id′ BicycleStatus(id′, x, y)

RepairingBicycle(id′, x) ∧ id , id′ RepairingBicycle(id′, x)

DeleteBicycle(id):

Bicycle(id′) ∧ id′ , id Bicycle(id′)
Unusable(id′) ∧ id′ , id Unusable(id′)

UnusableIsIn(id′, apNr, apSt) ∧ id′ , id UnusableIsIn(id′, apNr, apSt)
BicycleStatus(id′, x, y) ∧ id , id′ BicycleStatus(id′, x, y)

RepairingBicycle(id′, x) ∧ id , id′ RepairingBicycle(id′, x)

Appendix C

Complexity: Proofs

This appendix contains the proofs of the main theorems presented in Chapter 7.
It first begins by a formal introduction to counter machines, and in particular,
to 2-counter machines. Afterwards it describes the proofs themselves.

C.1 Background on 2-Counter Machines

We follow the original formulation in [93]. A counter is a memory register
that stores a non-negative integer. Given two positive integers n,m ∈ N+, an
m-counter machine Cwith counters c1, . . . , cm is a program with n commands:

1 : CMD1; 2 : CMD2; . . . n : HALT;

where each CMDk (for index k ∈ {1, . . . ,n− 1}) is either an increment command
or a conditional decrement command.

Given i ∈ {1, . . . ,m}, an increment command for counter i, written INC(i,), is a
command that increases the counter ci of one unit, and then jumps to the next
instruction. Formally, for k, k′ ∈ {1, . . . ,n − 1},

k : INC(i, k′) means k : ci := ci + 1; GOTO k′;

Given i ∈ {1, . . . ,m}, and k, k′, k′′ ∈ {1, . . . ,n}, a conditional decrement instruc-
tion for counter i and instruction k, written CDEC(i, k′, k′′), tests whether the
value of counter i is zero. If so, it jumps to instruction k′; otherwise, it de-
creases counter i of one unit, and then jumps to instruction k′′. Formally, for
k, k′, k′′ ∈ {1, . . . ,n − 1}, command k : CDEC(i, k′, k′′) means

k : if ci = 0 then GOTO k′; else {ci := ci − 1; GOTO k′′; }

203

204 Appendix C. Complexity: Proofs

An input for an m-counter machine is an m-tuple 〈d1, . . . , dm〉 of values in N
initializing its counters. Given an m-counter machine C and an input I of size
m, we say that C halts on input I if the execution of Cwith counter initial values
set by I eventually reaches the last, HALT command.

It is well-known that checking whether a 2-counter machine halts on a
given input is undecidable [93], and it is easy to strengthen this result as
follows:

Corollary C.1.1. It is undecidable to check whether a 2-counter machine halts on
input 〈0, 0〉.

In the following, we say that a 2-counter machine halts if it halts on input
〈0, 0〉.

C.2 Theorems’ Proofs

C.2.1 Unrestricted Models

Theorem 7.2.1. Checking termination over unrestricted BAUML models is unde-
cidable.

Proof. By reduction from the halting problem of 2-counter machines, which
is undecidable (cf. Corollary 7.1.1). Specifically, given a 2-counter ma-
chine C, we produce a corresponding unrestricted BAUML model BC =
〈M

u, ∅, {Su
2CM}, {P

u
init,P

u
run}, {init, inc1,dec1, inc2,dec2,halt}〉, whose components

are illustrated in Table C.1. The idea behind the reduction is as follows. M
contains a single artifact 2CM, which can be ready or halted, the latter being the
termination state (term2CM = Halted2CM), as it can be clearly seen in Su

2CM. As
specified in diagram S2CM, the init operation is activated only if the extension
of Flag is empty. In this case, a new artifact instance of Ready2CM and a new
object of type Flag are simultaneously created. The creation of a Flag object
has the effect of blocking the possibility of creating new instances of Ready2CM,
in turn ensuring that only a single instance of Ready2CM will be created, and
that only one execution of Prun will run. In fact, the only instance of 2CM that
enters S2CM will move to the halted state by executing the activity diagram Prun.
In turn, Prun encodes the program of C, by combining the process fragments
obtained by translating the single commands in C as specified in Table C.1.
Two classes Item1 and Item2 are used to mirror the two counters. In particular,
at a given moment in time, the number of instances of Itemi represents the
value of counter i. In this light:

C.2. Theorems’ Proofs 205

• incrementing counter i translates into the creation of a new instance of
Itemi;

• testing whether counter i is 0 translates into checking whether the exten-
sion of class Itemi is empty;

• decrementing counter i translates into the deletion of one of the current
instances of Itemi.

Table C.1 shows how these three aspects can be formalized in terms of activity
diagrams and OCL queries (focusing on counter 1). The diamond gateways at
the beginning of each fragment are used to properly merge multiple incoming
paths.

The claim follows by observing that C halts if and only if the unique
instance of 2CM that enters S2CM also reaches the Halted2CM state, i.e., properly
terminates.

�

C.2.2 Models with Non-Shared Instances

Navigational and Unidirectional Models Before presenting the proofs cor-
responding to the navigational and unidirectional models, we characterize
navigation in µLp. Without loss of generality, we consider only binary rela-
tions1. A pseudo-navigational µLp property has the form:

Φ ::=true | false | A(x) | ¬A(x) | Φ1 ∧Φ2 | Φ1 ∨Φ2 |

Z | µZ.Φ | νZ.Φ |
∃x.A(x) ∧Φ(x) | ∀x.A(x)→ Φ(x) |
∃y.R(x, y) ∧Φ(y) | ∀y.R(x, y)→ Φ(y) |
∃y.R(y, x) ∧Φ(y) | ∀y.R(y, x)→ Φ(y) |
A(x) ∧ 〈−〉Φ | A(x) ∧ [−]Φ | A(x)→ 〈−〉Φ | A(x)→ [−]Φ

where, in the last row, variable x is exactly the single free variable of Φ, once
we substitute to each bounded predicate variable Z in Φ its bounding for-
mula µZ.Φ′ (resp., νZ.Φ′). Notice that pseudo-navigational properties are in
negation normal form, and that they constitute indeed a fragment of µLp.
In fact, even if they do not make use of live, they always guard quantifica-
tion and next-state transitions with classes and/or relations, which imply the
corresponding quantified objects to be in the current active domain.

1Non-binary relations can be removed through reification.

206 Appendix C. Complexity: Proofs

Given a unidirectional BAUML modelB = 〈M,O,S,P,T〉, we characterize
the fact that a closed, pseudo-navigational µLp property Φ is navigationally
compatible with B as:

• Φ contains a subformula of the form ∃x.A(x) ∧Ψ(x) or ∀x.A(x)→ Ψ(x).

• The largest subformula of Φ of the form∃x.A(x)∧Ψ(x) or ∀x.A(x)→ Ψ(x)
is such that:

– A ∈ a-classes(B), and

– A and x are compatible with Ψ, written cmpx
A(Ψ) = true, according

to the notion of compatibility defined below.

Given a class C inM, a variable x, and a pseudo-navigational open µLp
property Φ(x), we define cmpx

C(Φ) as:

1. true if Φ ∈ {true, false,Z}

2. C vM A ∨ A vM C if Φ ∈ {A(x),¬A(x)}

3. cmpx
C(Φ1) ∧ cmpx

C(Φ2) if Φ ∈ {Φ1 ∧Φ2,Φ1 ∨Φ2}

4. cmpx
C(Ψ) if Φ ∈ {µZ.Ψ, νZ.Ψ}

5. false if Φ ∈ {∃y.A(y) ∧Ψ(y),∀y.A(y)→ Ψ(y)}

6. trgB(R|2) ∧ cmpy
C′ (Ψ) ∧ ((C vM ∃R) ∨ (∃R vM C))

if Φ ∈ {∃y.R(x, y) ∧Ψ(y),∀y.R(x, y)→ Ψ(y)}
and C′ =M ∃R−

7. trgB(R|1) ∧ cmpy
C′ (Ψ) ∧ ((C vM ∃R−) ∨ (∃R− vM C))

if Φ ∈ {∃y.R(y, x) ∧Ψ(y),∀y.R(y, x)→ Ψ(y)}
and C′ =M ∃R

8. (C vM A ∨ A vM C) ∧ cmpx
C(Ψ)

if Φ ∈ {A(x)∧〈−〉Ψ,A(x)∧[−]Ψ,A(x)→〈−〉Ψ,A(x)→[−]Ψ}

Intuitively, the formulae above state that: (1) C and x are always compatible
with non-first-order subformulae. (2) C and x are compatible with first-order
components of the form A(x) or ¬A(x) if classes A and C belong to the same
hierarchy according toM; this means that navigation through classes is only
allowed in the context of the same hierarchy. (3) boolean connectives distribute
the compatibility check to all their inner sub-formulae. (4) fixpoint constructs
push the compatibility check to their inner sub-formulae. (5) compatibility is
broken if new quantified variables over classes are introduced in the formula.

C.2. Theorems’ Proofs 207

This means that at most one quantification over classes is allowed in a pseudo-
navigational property to be navigationally compatible withB. (6) and (7) deal
with navigation along a binary relation, from the first to the second component
in (6), and from the second to the first component in (7). In particular, (6) states
that the formula can quantify over the second component of a relation R where
x points to the first component if:

1. the second component of R is a target role inB, witnessing that Φ agrees
with the unidirectional navigation imposed by B over R;

2. class C belongs to the same hierarchy of the domain class for R, according
toM;

3. C′ and y are navigationally compatible with the inner formula Ψ, where y
is the newly quantified variable, and C′ is the image class for R according
toM.

(7) works in a similar way, by simply inverting the second and first components
of R. (8) next-state transition formulae are compatible if the class used in the
guard belongs to the same hierarchy of C, and C and x are compatible with the
inner subformula.

Notice that termination properties are always guaranteed to be naviga-
tionally compatible with the corresponding BAUML model, since A and termA

belong by definition to the same hierarchy.
Unfortunately, the following result shows that restricting BAUML models

to be unidirectional is not sufficient to obtain decidability of checking termi-
nation properties.

Theorem 7.2.2. Checking termination of unidirectional BAUML models is undecid-
able.

Proof. Given a 2-counter machine C, we produce
a corresponding unidirectional BAUML model BC =
〈M

∗, ∅, {S∗2CM}, {P
∗

init,P
∗
run}, {init, inc1,dec1, inc2,dec2,halt}〉, whose components

are illustrated in Table C.2. M∗ contains a single artifact 2CM, which can be
ready or halted, the latter being the termination state (term2CM = Halted2CM),
as attested by S∗2CM. When the init operation is applied, a new instance m of
Ready2CM is created, attaching to it two dedicated objects of type Counter,
using respectively role c1 and c2 of the associations hasC1 and hasC2. Such
Counter objects mirror the two counters of C. In particular, each of the two
Counter objects attached to m has a 1-to-many association with Item: at a

208 Appendix C. Complexity: Proofs

[id=331]: 2CM

: Counter

[id=43]:Item

[id=134]:Item
[id=8]:Item

: Counter c1 c2

items

[id=331]: 2CM

[id=43]:Item

[id=134]:Item
[id=8]:Item

c1 c2

items itemsitems

[id=12]:Item

c1 3 c2 0 c1 3 c2 1

[id=331]: 2CM

[id=134]:Item
[id=8]:Item

c1 c2

items items

[id=12]:Item

c1 2 c2 1

inc2(12,m) dec1(43,m)

m m m
: Counter : Counter : Counter : Counter

Figure C.1: Sample counter manipulation using the BAUML model in Table C.2

given time, the number of items attached to m.c1 (m.c2 resp.) represents the
value of the first (second resp.) counter in C.

The artifact instance m then executes the process corresponding to the run
event, which suitably encodes the program of C:

1. incrementing the first counter translates into the inclusion of a new Item
to the items of m.c1, i.e., to the set m.c1.items;

2. testing whether the first counter is 0 translates into checking whether set
m.c1.items is empty;

3. decrementing the first counter translates into the removal of one item
from set m.c1.items (it is not important which).

Table C.2 shows how these three aspects can be formalized in terms of activity
diagrams and OCL queries. The management of the second counter is analo-
gous, with the only difference that it involves m.c2.items in place of m.c1.items.
Figure C.1 intuitively shows the evolution of a specific configuration of the
system in response to the application of two operations.

Observe that, as graphically depicted inM∗ (consistently with the opera-
tions), BC is unidirectional: all OCL expressions (except from that in init) are
navigational in m, and navigation unidirectionally flows from 2CM to Counter
to Item. Furthermore, no two objects of type Counter, nor two objects of
type Item, are shared by different instances of 2CM. This means that every
instance of Ready2CM runs the process corresponding to the program of C in
total isolation with other instances of Ready2CM) and, consequently, either all
halt or none halt. The claim follows by observing that C halts if and only if all
instances of Ready2CM eventually reaches the Halted2CM state, i.e., properly
terminate.

�

C.2. Theorems’ Proofs 209

Cardinality-Bounded Models

Theorem 7.2.3. Let B be an arbitrary unidirectional, cardinality-bounded BAUML
model. Verifying whether B satisfies a µLp property navigationally compatible with
B is decidable, and reducible to finite-state model checking.

Proof. Let B = 〈M,O,S,P,T〉 be a cardinality-bounded, unidirectional
BAUML model, and let Φ be a µLp property navigationally compatible with
B. On the one hand, by inspecting the notion of navigational compatibility,
one can notice that Φ is “rooted” in a single artifact class S, subject to the outer-
most subformula of the form ∃x.S(x)∧Ψ(x) (or ∀x.S(x)→ Ψ(x)). Navigational
compatibility then ensures that Φ only mentions relations and classes that can
be reached by navigatingM using is-a relationships (in both directions), or as-
sociations, in a direction that is compatible with the unidirectionality imposed
by B.

On the other hand, as pointed out in Section 7.2.2, in a navigational model
like B it is impossible for artifact instances to share objects that belong to
read-write classes. This means that the evolution of an artifact instance is
completely independent from that of the other artifact instances of the same
type artS, or other artifact types.

By combining this two observations, we obtain that Φ obeys to a sort of
isolation property:

• Φ does not distinguish whether the system contains evolving artifact
instances of types different than artS;

• Φ does not distinguish whether the instances of artS evolve in isolation,
or co-evolve in a concurrent way.

This isolation property is a data-aware variant of the free-choice property of
Petri nets. Thanks to such property, instead of directly considering the whole
concurrent evolution of the system, in which unboundedly many artifact in-
stances could be created over time and evolved in parallel, one can consider a
faithful, sound and complete abstraction of the system, which accounts only
for the concurrent evolution of those instances of type artS present in the
initial database of B, plus an additional artifact instance of type artS, nonde-
terministically created and evolved in addition to the others.

Let bi be the number of artifact instances of type artS present in the initial
database of the system. From the fact that B is unidirectional and cardinality-
bounded, we have that each artifact instance can create only a bounded amount

210 Appendix C. Complexity: Proofs

of objects during its evolution. In fact, the number of objects that can be created
by an artifact instance is bounded by (k ·N)l+1, where:

1. k is the number of relations in the schema (which bounds the number of
relations that are collectively attached to an artifact/class in the schema),

2. N is the maximum cardinality upper bound attached to a target role
belonging to a path rooted in artS, and

3. l is the length of the longest navigational path rooted in artS.

As a consequence, by considering the aforementioned sound and complete
abstraction, we have that at most (bi + 1) · Nl+1 objects and artifact instances
are simultaneously present in a system snapshot. The claim then follows by:

1. applying the translation from BAUML models to data-centric dynamic
systems (DCDSs) [11], explained in Chapter 5;

2. observing that the bound (bi + 1) ·Nl+1 implies that the obtained DCDSs
is state-bounded;

3. recalling that verification of µLp properties over state-bounded DCDSs
is decidable, and reducible to finite-state model checking [11].

�

Theorem 7.2.4. Checking termination of 1-cardinality-bounded, bidirectional
BAUML models is undecidable.

Proof. Given a 2-counter machine C, we produce a corre-
sponding 1-cardinality-bounded, bidirectional BAUML model BC =
〈M

b, ∅, {Sb
2CM}, {P

b
init,P

b
run}〉, whose components are illustrated in Table C.2. Mb

contains a single artifact 2CM, which can be ready or halted, the latter being
the termination state (term2CM = Halted2CM), as attested by Sb

2CM. When the
init operation is applied, a new instance m of Ready2CM is created, attaching a
dedicated item that represents the zero point for both counters.

Intuitively, m mirrors the two counters in C as follows. Thanks to the fact
that m can navigate and manipulate the association hasNext in both directions
(i.e., from left to right and from right to left), the length of the right chain from
the zero element m.zero corresponds to the value of the first counter, whereas
the length of the left chain from the zero element corresponds to the value of
the second counter.

The artifact instance m suitably encodes the commands in C as follows:

C.2. Theorems’ Proofs 211

• Incrementing the first counter requires to create a new Item, and to put
this object between the zero element and the old right-successor of it
(cf. inc1, which conveniently exploits notation “@pre” to query the con-
figuration of objects in the last predecessor state). This has the effect of
increasing the length of the right chain of one unit. The alternative oper-
ation incZ1 handles the special case in which there is no right-successor
from the zero element: in this case incrementing the counter just corre-
sponds to add a new item on the right of the zero element.

• Testing whether the first counter is 0 translates into checking whether
set m.zero.r is empty, i.e., whether it is true that the zero element does not
have any right successor.

• Decrementing the first counter translates into the removal of one item
from set right chain of the zero element. There are two possible cases.
In the first case, there is just a single right-successor, i.e., the counter has
value 1. In this case, operation decS1 just ensures that m.zero.r does not
have anymore this successor. If instead the right chain is longer than 1,
then the decrement is handled by making the second right-successor of
m.zero the new direct right-successor of it, at the same time isolating the
old direct right-successor.

Table C.3 shows how these three aspects can be formalized in terms of ac-
tivity diagrams and OCL queries. The management of the second counter
is analogous, with the only difference that it navigates the left chain of the
zero element, i.e., it exploits the l role of relation hasNext in place of the r role.
Figure C.1 intuitively shows the evolution of a specific configuration of the
system in response to the application of two operations.

Observe that, as clearly shown byMb, BC is 1-cardinality-bounded, and is
bidirectional, because relation hasNext is navigated on both directions, making
both l and r target roles. Furthermore, like for the reduction in Theorem 7.2.2,
each artifact instance is created in state Ready2CM, and evolves completely
independently from the other artifact instances. This means that either all
instances of Ready2CM halt, or none halt. The claim follows by observing that
C halts if and only if all instances of Ready2CM eventually reach the Halted2CM
state, i.e., properly terminate.

�

212 Appendix C. Complexity: Proofs

:2CM m

l

:Item :Item :Item :Item

c1 3 c2 1

inc2(m)
zero

r l r l rl r

:2CM m

l

:Item :Item :Item :Item

c1 3 c2 2

dec1(m)
zero

r l r l rl r
lr

:2CM m

l
:Item :Item :Item :Item

c1 2 c2 2

zero

r l rl r
lr

Figure C.2: Sample counter manipulation using the BAUML model in Table C.3

C.2.3 Models with Shared Instances

Theorem 7.2.5. Checking termination of 1-cardinality-bounded, unidirectional
BAUML models with shared instances is undecidable.

Proof. Given a 2-counter machine C, we produce a corresponding 1-
cardinality-bounded unidirectional BAUML model with shared instances
BC = 〈Mbu, ∅, {Sbu

2CM}, {P
bu
init,P

bu
run}〉, whose components are illustrated in Ta-

bles C.4 and C.5.
As shown in Tables C.4 and C.5,Mbu contains a single artifact Conn, which

can be ready or halted, the latter being the termination state (termConn =
HaltedConn), as attested by Sbu

Conn. Due to cardinality boundedness and uni-
directionality, a single instance of BC is not powerful enough to simulate C.
Hence, differently from the previous undecidability proofs, the two counters
are now simulated by unbouded chains of artifact instances. In this light, the
main difficulty is to properly “synchronize” such different instances so as to
ensure that they collectively implement the program of C, without interfering
with each other. To realize such a synchronization, all instances of Conn share
an instance of PC, which represents a “program counter” to keep track of the
current instruction to be processed in C. Intuitively, each instance of Conn
represents a connection between two items; a chain of three items is then built
by using two instances of Conn, making sure that the first instance has on the
right the same Item that the second instance has on the left. This structure
constitutes the basis for simulating a counter.

Let us now go into the details of such a simulation. The initialization
transition in Sbu

Conn consists now of a complex activity diagram Pbu
init, which

consists of the following steps:

• Initially, if there is no instance of the program counter, one instance is
created, setting its “position” (represented by a string attribute pos) to
the constant string 1. If an instance of PC already exists, then this step is
skipped.

C.2. Theorems’ Proofs 213

• The second step consists of the creation of a new connection artifact
instance (of type Conn), with a distinguished identifier. Upon creation,
the pc role of this connection points to the only available instance of PC.

• The third steps is applied only if no instance of class Item exists in the
system. In this case, two special items are created so as to represent the
zero elements for the two counters of C. This is done as follows:

– The zero element for the first counter consists of a newly created
instance iR0 of Item, whose boolean attribute startC1 is set to true.
Item iR0 is attached to the right of the just created instance of Conn.
Since iR0 is not on the left of any connection, also its boolean attribute
lastR is set to true.

– The zero element for the second counter consists of a newly cre-
ated instance iL0 of Item, whose boolean attribute startC2 is set to
true. Item iL0 is attached to the left of the just created instance of
Conn. Since iL0 is not on the right of any connection, also its boolean
attribute lastL is set to true.

The structure obtained when 4 instances of Pbu
init are executed in a row can be

seen on the left of Figure C.3.
The idea behind the manipulation of counters starting from this structure

is to extend (resp., reduce) the chain on the right of item iR0 to increment (resp.,
decrement) the first counter, and to extend (resp., reduce) the chain on the left
of item iR0 to increment (resp., decrement) the second counter. Since the case
of the second counter is obtained by just mirroring that of the first counter, we
just concentrate on the first counter.

The first important observation, which is common to the case of counter
increment and decrement, concerns the problem of synchronization. On the
one hand, as already pointed out we want all instances of Conn to collectively
realize the program of C. On the other hand, there is no control on when
new instances of Conn are created. In particular, it could be the case that a new
connection is created when the other active connections have already executed
part of the program ofC. Similarly, since there is no control on how the different
active instances of Conn interleave with each other, when a connection executes
the portion of Pbu

run corresponding to instruction number k in C, it must ensure
that k is indeed the current intruction. More specifically, instruction number k
always contains an initial choice, used to check whether the program counter
is indeed k and, if so, whether the instance of Conn that is executing the process

214 Appendix C. Complexity: Proofs

is responsible for the execution of instruction k, or should instead just execute
an “idle” loop and wait that the responsible connection executes step k. If the
program counter stores in its pos attribute an instruction identifier different
than k, then the process just “jumps” to the right step. If instead the program
counter corresponds to k, then a different behavior is exhibited depending on
whether the instruction number k corresponds to an increment or conditional
decrement for the first counter.

In the case of increment:

• If the connection is not associated to any item on its left and its right (i.e.,
it is not part of any chain), then the connection becomes responsible for
the increment, which is atomically executed using the operation kInc1.
The increment is realized as follows:

– The unique item (called i) that has attribute lastR set to true is
selected.

– This item is attached on the left of the current connection, setting
its lastR attribute to false. In this way, it is easy to see that an item
has lastR = false if and only if there is no connection that has it on
the left.

– A new item is created and attached on the right of the current
connection, setting its lastR attribute to true. This newly created
item represents the increment of the first counter, and the current
connection acts as the last connection of the chain simulating the
first counter.

– The program counter is updated, setting its pos attribute to the
string that corresponds to the new instruction identifier k′. Since k′

is a pre-defined string, each increment is different from the others,
and this is why each specific increment is mapped to a separate
operation in Pbu

run.

Considering e.g., the case of instruction 1 : INC(1, 7), the central part
of Figure C.3 represents the new data configuration after the execution
of this step by one of the connections that are currently active but not
associated to any item.

• If instead the connection is already attached to an item on the left or on
the right, then it executes an idle step, going back to check whether the
program counter is still k or has instead been updated.

C.2. Theorems’ Proofs 215

In the case of conditional decrement:

• If the connection has on its right an item whose attribute lastR is true,
then the connection becomes responsible for the conditional decrement.
Two cases may then arise: either the first counter is 0, and consequently
only the program counter must be updated, or the counter is positive,
and consequently the counter must be decremented before updating the
program counter. The test for zero can be easily captured in Bbu by
testing whether the item having lastR = true also has startC1 = true: if
so, then the first counter is zero, if not, then the first counter is positive. In
the former case, captured by query Q1

0, the specific task kPC is executed,
whose effect is simply to update the attribute pos of the program counter
to the string corresponding to k′′; since k′′ is a pre-defined string, each
program counter update is different from the others, and this is why
each specific program counter update is mapped to a separate operation
in Pbu

run. In the latter case, captured by query Q1
−

, an atomic decrement
and program counter update is executed using the operation kDec1. The
decrement is realized as follows:

– The item that was previously on the right of the connection is up-
dated making its lastR attribute equal to false.

– The item that was previously on the left of the connection (i.e., on
the right of the previous connection along the chain) is updated
making its lastR attribute equal to true.

– The connection is disconnected from both such items, hence re-
ducing the chain of one item. This has also the indirect effect of
making the connection eligible for being responsible of a successive
increment.

– The program counter is updated, setting its pos attribute to the
string that corresponds to the new instruction identifier k′. Since k′

is a pre-defined string, each decrement is different from the others,
and this is why each specific decrement is mapped to a separate
operation in Pbu

run.

Considering the case of instruction 7 : CDEC(1, 2, 9), the right part of
Figure C.3 represents the new data configuration after the execution of
this step by the connection that is currently at the end of the right chain.

216 Appendix C. Complexity: Proofs

:Conn
c

[pos=2]:PC
:Conn

c
[pos=7]:PC

:Conn

l r

[firstC1=true,
 lastR=true]:Item

[firstC2=true,
 lastL=true]:Item

c1 0 c2 0

:Conn
:Conn

:Conn
c

1Inc1(c) 7Dec1(c)

:Conn

l r

[firstC1=true]:Item[firstC2=true,
 lastL=true]:Item

c1 1 c2 0

:Conn
:Conn

[lastR=true]:Item

:Conn

l r

[firstC1=true,
 lastR=true]:Item

[firstC2=true,
 lastL=true]:Item

c1 0 c2 0

:Conn
:Conn

[pos=1]:PC

:Item

Figure C.3: Sample counter manipulation using the BAUML model in Ta-
bles C.4 and C.5

• If instead the connection does not have on its right the element whose
lastR attribute is true, then it executes an idle step, going back to check
whether the program counter is still k or has instead been updated.

As soon as one of the active connection artifact instances sets the program
counter to the constant n, all active connections move to the final part of Pbu

run,
where they are moved from the ReadyConn to the HaltedConn state. If new
instances of Conn are subsequently created, they immediately jump to execute
this task as well (in fact, they all share the same program counter, whose pos
attribute continues to be n). This means that either all instances of ReadyConn
halt, or none halts. The claim follows by observing that C halts if and only if
all instances of ReadyConn eventually reach the HaltedConn state, i.e., properly
terminate. �

Theorem 7.2.6. Verification of µLp properties over cardinality-bounded, unidirec-
tional BAUML models with shared instances of read-write classes is decidable and
reducible to finite-state model checking when the number of simultaneously active
artifact instances is bounded.

Proof. Let B be a cardinality-bounded, unidirectional BAUML model. By
combining unidirectionality and cardinality-boundedness, we have that an
artifact instance can create only a bounded amount of objects during its evolu-
tion. In fact, the number of objects that can be created is bounded by (k ·N)l+1,
where k, N and l are as in the proof of Theorem 7.2.3. Since the number of
simultaneously active artifact instances is bounded, say, by a number b, then
at each time point the number of objects and artifact instances present in the
overall system is bounded by b · (k ·N)l+1. The claim then follows by:

1. applying the translation from BAUML models to DCDSs, described in
[50];

C.2. Theorems’ Proofs 217

2. observing that the bound b · (k ·N)l+1 implies that the obtained DCDS is
state-bounded;

3. recalling that verification of µLp properties over state-bounded DCDSs
is decidable, and reducible to finite-state model checking [11].

�

218 Appendix C. Complexity: Proofs
M

u
Su 2

C
M

2C
M

Ite
m

1
Ite

m
2

Fl
ag

id
: S

tr
in

g
id

: S
tr

in
g

id
: S

tr
in

g

Re
ad

y2
C

M
H

al
te

d2
C

M
Re

ad
y2

C
M

H
al

te
d2

C
M

ru
n(

m
:2

C
M

)
in

it(
id

:S
tr

in
g)

: 2
C

M

Pu in
it

in
it(

id
:St

rin
g)

: 2
CM

in
it

pr
e:

F
l
a
g
.a

llI
ns

ta
nc

es
()
→

is
Em

pt
y(

)
∧
¬

(R
e
a
d
y
2
C
M
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(m
′
|m
′
.id

=
id

))
po

st
:F
l
a
g
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(f
|f
.o

cl
Is

N
ew

()
)

∧
R
e
a
d
y
2
C
M
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(m
|m
.o

cl
Is

N
ew

()
∧

m
.id

=
id
∧

re
su

lt
=

m
)

Pu ru
n

st
ar

t
1

k
:I

N
C

(1
,k
′
)

in
c1
(id
:St
rin
g)

k
k'

in
c 1

pr
e:
¬

(I
t
e
m
1
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(i′
|i′
.id

=
id

))
po

st
:I
t
e
m
1
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(i|

i.o
cl

Is
N

ew
()
∧

i.i
d

=
id

)

k
:C

D
E

C
(1
,k
′
,k
′
′
)

k

de
c1
(id
:St
rin
g)

[e
lse
]

k' k'
'

[Q
1 0
]

Q
1 0

=
I
t
e
m
1
.a

llI
ns

ta
nc

es
()
→

is
Em

pt
y(

)

de
c 1

pr
e:

I
t
e
m
1
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(i|

i.i
d

=
id

)
po

st
:¬

(I
t
e
m
1
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(i|

i.i
d

=
id

))

n
:H

A
LT

n
ha
lt(
m
:2
CM

)
ha

lt
po

st
:¬

(m
.o

cl
Is

Ty
pe

O
f(
R
e
a
d
y
2
C
M

))
∧

m
.o

cl
Is

Ty
pe

O
f(
H
a
l
t
e
d
2
C
M

)

Ta
bl

e
C

.1
:U

nr
es

tr
ic

te
d

BA
U

M
L

m
od

el
si

m
ul

at
in

g
a

2-
co

un
te

r
m

ac
hi

ne

C.2. Theorems’ Proofs 219
M
∗

S∗ 2
C
M

2C
M

Re
ad

y2
C

M
H

al
te

d2
C

M

C
ou

nt
er

Ite
m

ha
sC

1

co
nt

ai
ns

1
0.

.1

1
*

0.
.1

1
c2

ha
sC

2
ite

m
s

c1
id

: S
tr

in
g

id
: S

tr
in

g
Re

ad
y2

C
M

H
al

te
d2

C
M

ru
n(

m
:2

C
M

)
in

it(
id

:S
tr

in
g)

: 2
C

M

P∗ in
it

in
it(

id
:St

rin
g)

: 2
CM

pr
e:
¬

(R
e
a
d
y
2
C
M
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(m
′
|m
′
.id

=
id

))
po

st
:R
e
a
d
y
2
C
M
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(m
|m
.o

cl
Is

N
ew

()
∧

m
.id

=
id
∧

re
su

lt
=

m
∧

(m
.c

1
→

ex
is

ts
(c

1|
c 1
.o

cl
Is

N
ew

()
))

∧
(m
.c

2
→

ex
is

ts
(c

2|
c 2
.o

cl
Is

N
ew

()
))

)

P∗ ru
n

st
ar

t
1

k
:I

N
C

(1
,k
′
)

in
c1
(id
:St
rin
g,
m
:2
CM

)
k

k'
in

c 1
pr

e:
¬

(m
.c

1.
ite

m
s
→

ex
is

ts
(i′
|i′
.id

=
id

))
po

st
:m
.c

1.
ite

m
s
→

ex
is

ts
(i|

i.o
cl

Is
N

ew
()
∧

i.i
d

=
id

)

k
:C

D
E

C
(1
,k
′
,k
′
′
)

k

de
c1
(id
:St
rin
g,
m
:2
CM

)
[e
lse
]

k' k'
'

[Q
1 0
]

Q
1 0

=
m
.c

1.
ite

m
s
→

is
Em

pt
y(

)

de
c 1

pr
e:

m
.c

1.
ite

m
s
→

ex
is

ts
(i|

i.i
d

=
id

)
po

st
:¬

(m
.c

1.
ite

m
s
→

ex
is

ts
(i|

i.i
d

=
id

))

n
:H

A
LT

n
ha
lt(
m
:2
CM

)
ha

lt
po

st
:¬

(m
.o

cl
Is

Ty
pe

O
f(
R
e
a
d
y
2
C
M

))
∧

m
.o

cl
Is

Ty
pe

O
f(
H
a
l
t
e
d
2
C
M

)

Ta
bl

e
C

.2
:U

ni
di

re
ct

io
na

lB
A

U
M

L
m

od
el

si
m

ul
at

in
g

a
2-

co
un

te
r

m
ac

hi
ne

220 Appendix C. Complexity: Proofs
M

b
Sb 2

C
M

2C
M

Ite
m

0.
.1

1
ze

ro
ha

sS
ep

0.
.1

0.
.1

l

r

ha
sN

ex
t

2C
M

Re
ad

y2
C

M
H

al
te

d2
C

Mid
: S

tr
in

g
Re

ad
y2

C
M

H
al

te
d2

C
M

ru
n(

m
:2

C
M

)
in

it(
id

:S
tr

in
g)

: 2
C

M

Pb in
it

in
it(

id
:St

rin
g)

: 2
CM

in
it

pr
e:
¬

(R
e
a
d
y
2
C
M
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(m
′
|m
′
.id

=
id

))
po

st
:R
e
a
d
y
2
C
M
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(m
|m
.o

cl
Is

N
ew

()
∧

m
.id

=
id
∧

re
su

lt
=

m
∧

m
.z

er
o
→

ex
is

ts
(i|

i.o
cl

Is
N

ew
()

))

Pb ru
n

st
ar

t
1

k
:I

N
C

(1
,k
′
)

in
c1
(m
:2
CM

)
k

k'
in
cZ

1(m
:2
CM

)

[e
lse
]

[Q
1 0
]

Q
1 0

=
(m
.z

er
o.

r
→

is
Em

pt
y(

))

in
cZ

1
po

st
:m
.z

er
o.

r
→

ex
is

ts
(i|

i.o
cl

Is
N

ew
()

)
in

c 1
po

st
:m
.z

er
o.

r
→

ex
is

ts
(i|

i.o
cl

Is
N

ew
()

∧
i.r

=
m
.z

er
o.

r@
pr

e)

k
:C

D
E

C
(1
,k
′
,k
′
′
)

k

[e
lse
]

k'
[Q

1 0
]

De
c1
(m
:2
CM

)
k'
'

De
cS
1(m

:2
CM

)

[e
lse
]

[Q
1 1
]

Q
1 0

=
(m
.z

er
o.

r
→

is
Em

pt
y(

))
Q

1 1
=

(m
.z

er
o.

r.
r
→

is
Em

pt
y(

))

de
cS

1
po

st
:m
.z

er
o.

r
→

is
Em

pt
y(

)
de

c 1
po

st
:l

et
ol

d r
=

m
.z

er
o.

r@
pr

e,
ne

w
r

=
m
.z

er
o.

r.
r@

pr
e

in
m
.z

er
o.

r
=

ne
w

r
∧

(o
ld

r.
r
→

is
Em

pt
y(

))

n
:H

A
LT

n
ha
lt(
m
:2
CM

)
ha

lt
po

st
:¬

(m
.o

cl
Is

Ty
pe

O
f(
R
e
a
d
y
2
C
M

))
∧

m
.o

cl
Is

Ty
pe

O
f(
H
a
l
t
e
d
2
C
M

)

Ta
bl

e
C

.3
:1

-c
ar

di
na

lit
y-

bo
un

de
d,

bi
di

re
ct

io
na

lB
A

U
M

L
m

od
el

si
m

ul
at

in
g

a
2-

co
un

te
r

m
ac

hi
ne

C.2. Theorems’ Proofs 221

M
bu

S C
o
n
n

C
on

n

Re
ad

yC
on

n
H

al
te

dC
on

n

Ite
m

PC

ha
sR

ig
ht

<
 h

as
PC

0.
.1

1
0.

.1l
ha

sL
ef

t
pc

r

po
s:

 S
tr

in
g

id
: S

tr
in

g
0.

.1

0.
.1

*
la

st
L:

 b
oo

l
la

st
R:

 b
oo

l
st

ar
tC

1:
 b

oo
l

st
ar

tC
2:

bo
ol

Re
ad

yC
on

n
H

al
te

dC
on

n
ru

n(
c:

C
on

n)
in

it(
id

:S
tr

in
g)

: C
on

n

Pbu in
it

in
it

(id
:S

tr
in

g)
:

C
on

n

cr
ea

te
PC

()

[e
ls

e]
[Q

P
C

]

at
ta

ch
(c

:
C

on
n)

[e
ls

e]

[Q
I
]

Q
PC

=
P
C
.a

llI
ns

ta
nc

es
()
→

is
Em

pt
y(

)
Q

I
=
I
t
e
m
.a

llI
ns

ta
nc

es
()
→

is
Em

pt
y(

)

cr
ea

te
P

C
po

st
:P
C
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(p

c|p
c.

oc
lIs

N
ew

()
∧

pc
.p

os
=

1)
)

in
it

pr
e:
¬

(R
e
a
d
y
C
o
n
n
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(m
′
|m
′
.id

=
id

))
po

st
:R
e
a
d
y
C
o
n
n
.a

llI
ns

ta
nc

es
()
→

ex
is

ts
(c
|c.

oc
lI

sN
ew

()
∧

c.
id

=
id
∧

re
su

lt
=

c
∧

c.
pc

=
(P
C
.a

llI
ns

ta
nc

es
()

))
at

ta
ch

po
st

:c
.r
→

ex
is

ts
(s

1|
s 1
.o

cl
Is

N
ew

()
∧

s 1
.la

st
R

=
tr

ue
∧

s 1
.s

ta
rt

C
1

=
tr

ue
)

∧
c.

l→
ex

is
ts

(s
2|

s 2
.o

cl
Is

N
ew

()
∧

s 2
.la

st
L

=
tr

ue
∧

s 2
.s

ta
rt

C
2

=
tr

ue
)

Ta
bl

e
C

.4
:1

-c
ar

di
na

lit
y-

bo
un

de
d,

un
id

ir
ec

ti
on

al
BA

U
M

L
m

od
el

w
it

h
sh

ar
ed

ob
je

ct
ss

im
ul

at
in

g
a

2-
co

un
te

r
m

ac
hi

ne
(P

ar
t1

)

222 Appendix C. Complexity: Proofs

Pbu ru
n

st
ar

t
1

k
:I

N
C

(1
,k
′
)

kI
nc

1
(c

:C
on

n)

k

k'

k'
i..
.

..
.

n-
2

 c
ho

ic
es[Q

+
]

[Q
lo

o
p
]

[Q
k
0 i

f
w
]

Q
+

=
(c
.p

c
=

k)
∧

(c
.l
→

is
Em

tp
y(

))
∧

(c
.r
→

is
Em

pt
y(

))
Q

lo
op

=
(c
.p

c
=

k)
∧
¬

((
c.

l→
is

Em
tp

y(
))
∧

(c
.r
→

is
Em

pt
y(

))
)

Q
k′ i fw

=
(c
.p

c
=

k′ i)f
or

k′ i
∈
{1
,.
..
,n
}
\
{k
,k
′
}

kI
nc

1
po

st
:l

et
i=

(I
t
e
m
.a

llI
ns

ta
nc

es
()
→

se
le

ct
(i′
|i′
.la

st
R

))
in

c.
l=

i∧
i.l

as
tR

=
fa

ls
e

∧
c.

r
→

ex
is

ts
(i′
′
|i′
′
.is

O
cl

N
ew

()
∧

i′′
.la

st
R

=
tr

ue
)

∧
c.

pc
=

k′

k
:C

D
E

C
(1
,k
′
,k
′
′
)

kD
ec

1
(c

:C
on

n)
k

k'
'

k'
i

..
.

..
.

n-
3

 c
ho

ic
es

[Q
lo

o
p
]

[Q
k
0 i

f
w
]

[Q
1 0
]

[Q
1 �

]

kP
C

(c
:C

on
n)

k'
Q

1 0
=

(c
.p

c
=

k)
∧

c.
r.

la
st

R
∧

c.
r.

st
ar

tC
1

Q
1 −

=
(c
.p

c
=

k)
∧

c.
r.

la
st

R
∧
¬

c.
r.

st
ar

tC
1

Q
lo

op
=

(c
.p

c
=

k)
∧
¬

c.
r.

la
st

R

Q
k′ i fw

=
(c
.p

c
=

k′ i)f
or

k′ i
∈
{1
,.
..
,n
}
\
{k
,k
′
,k
′
′
}

kP
C

po
st

:c
.p

c
=

k′
′

kD
ec

1
po

st
:l

et
i r

=
c.

r@
pr

e,
i l

=
c.

l@
pr

e
in

i l.
la

st
R

=
tr

ue
∧

i r
.la

st
R

=
fa

ls
e

∧
(c
.l
→

is
Em

pt
y(

))
∧

(c
.r
.→

is
Em

pt
y(

))

n
:H

A
LT

n
ha
lt
(c
:C
on
n)

ha
lt

po
st

:¬
(m
.o

cl
Is

Ty
pe

O
f(
R
e
a
d
y
C
o
n
n

))
∧

m
.o

cl
Is

Ty
pe

O
f(
H
a
l
t
e
d
C
o
n
n

)

Ta
bl

e
C

.5
:1

-c
ar

di
na

lit
y-

bo
un

de
d,

un
id

ir
ec

ti
on

al
BA

U
M

L
m

od
el

w
it

h
sh

ar
ed

ob
je

ct
ss

im
ul

at
in

g
a

2-
co

un
te

r
m

ac
hi

ne
(P

ar
t2

)

	Preface
	Introduction
	Artifact-centric Business Process Modeling
	Quality of Business Process Models
	Goals and Contributions of this Thesis
	The BAUML Modeling Framework
	Reasoning on BAUML Models

	Research Methodology
	Structure of the Document

	Modeling Artifact-centric Business Process Models
	Preliminaries of Modeling
	The BALSA Framework
	State of the Art
	Process-centric Approaches
	Bridging the Gap between Process-centric and Artifact-centric Specifications
	Artifact-centric Approaches
	Summary & Conclusions

	Artifact-centric Business Process Modeling in UML
	The BAUML Framework
	Business Artifacts as a Class Diagram
	Lifecycles as State Machine Diagrams
	Associations as Activity Diagrams
	Tasks (Services) as Operation Contracts
	A Note on the Models

	Formalization of the BAUML Framework
	Class Diagram and Integrity Constraints
	State Machine Diagrams
	Activity Diagrams
	Tasks

	An Example with Two Artifacts
	Class Diagram
	State Machine Diagrams
	Activity Diagrams
	Operation Contracts

	On the Relationship with Soft. Eng. Methodologies
	Object-oriented Analysis
	Enterprise Architecture

	Summary & Conclusions

	Reasoning on Artifact-centric Business Process Models
	Preliminaries of Reasoning
	Basic Concepts
	State of the Art
	Simulation
	Process Model Testing
	Syntactical & Structural Reasoning
	Semantic Reasoning
	Summary

	Reasoning Using Data-centric Dynamic Systems
	Background
	An overview of Data-centric Dynamic Systems
	Mapping DCDSs to the BALSA Framework
	Assumptions

	Translating a UML Artifact-centric BPM to a DCDS
	Translating the Class Diagram
	Translating the State Machine Diagram
	Translating the Activity Diagrams
	Translating the Tasks
	Summary & Overview

	Reasoning with the Resulting DCDS
	Verification Logic
	Evolution of an Artifact

	Summary & Conclusions

	Reasoning in Practice: AuRUS-BAUML
	Checking the Semantic Correctness of BAUML Models
	Verification
	Validation

	AuRUS-BAUML: The Tool & Its Workflow
	ArgoUML
	AuRUS-BAUML

	Translation of BAUML into Logic
	Background on Logic Formalization
	Overview of the Translation Process
	Translation Algorithms

	Formalization of Tests & Results
	Verification Tests
	Validation Tests
	Some Test Results

	Summary & Conclusions

	Decidability
	Background
	2-Counter Machines
	Running Example: An Online-Retailer

	Results of Our Decidability Analysis
	Unrestricted Models
	Models with Non-Shared Instances
	Models With Shared Instances
	Applicability of the Results to the Bicing Example

	Summary & Conclusions

	Closure
	Conclusions
	Contributions
	Modeling Artifact-centric Business Process Models
	Reasoning on Artifact-centric Business Process Models

	Further Research
	Impact of the Thesis
	Artifact-centric Business Process Modeling
	Reasoning on Artifact-centric Business Process Models

	References
	Bicing: Full Example Specification
	One Artifact
	Class Diagram
	State Machine Diagram
	Activity Diagrams & Operation Contracts

	Two Artifacts
	Class Diagram
	State Machine Diagram
	Activity Diagrams & Operation Contracts

	Translation of Bicing into a DCDS
	Data dimension
	Condition-Action Rules
	Actions

	Complexity: Proofs
	Background on 2-Counter Machines
	Theorems' Proofs
	Unrestricted Models
	Models with Non-Shared Instances
	Models with Shared Instances

